Hans Triebel

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Germany

PDE models for chemotaxis in supercritical function spaces

Chemotaxis is the movement of biological cells or organisms in response to chemical gradients. This can be described by the so-called parabolic–parabolic Keller–Segel equations

$$\begin{aligned} \partial_t u &= \Delta u - \operatorname{div} \left(u \nabla v \right), \\ \partial_t v &= \Delta v - \alpha v + u, \end{aligned}$$

and their parabolic-elliptic counterpart

 $\begin{aligned} \partial_t u &= \Delta u - \operatorname{div} \left(u \, \nabla v \right), \\ -\Delta v &= u - \alpha v. \end{aligned}$

Here u = u(x, t) denotes the *cell density* and v describes the *concentration of the chemical signal*. We develop the theory of these equations in the context of some Besov–Sobolev spaces.