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Directional wavelet projections and interpolatory estimates
for Riesz transform revisited

The problem presented in this talk has its origin in papers [4], [2], [3]. In these papers, the authors
obtained the following interpolation inequality: let Φ ∈ L2(Rd) be a fixed element of the Haar
system on Rd, or a fixed element of an orthonormal wavelet system on Rd, satisfying some Höl-
der condition, and let PΦu =

∑
j∈Z,k∈Zd(u,Φj,k)Φj,k be the orthogonal projection onto the space

spanned by {Φj,k(·) = 2dj/2Φ(2j · −k), j ∈ Z, k ∈ Zd}. Then the following inequality holds:

(∗) ‖PΦu‖p ≤ C‖u‖1−θp ‖Riu‖θp, 1 < p <∞,

where Ri is Riesz transform on Rd in i-th direction, and 0 < θ < 1 is an exponent, depending only on
the wavelet under consideration and p. In case of the Haar wavelet, there is θ = 1/2 for 2 ≤ p <∞
and θ = 1−1/p for 1 < p ≤ 2, and these exponents are best possible. In case of a wavelet satisfying
the Hölder condition with an exponent 0 < α < 1, there is θ = α for all p; there is also a version of (∗)
for α = 1.
The aim of this talk is to explain the nature of the exponent θ appearing in (∗) in case p = 2 for
more general functions Φ. For Φ ∈ L2(Rd) such that {Φj,k(·) = 2dj/2Φ(2j · −k), j ∈ Z, k ∈ Zd} is
an orthonormal system in L2(Rd), we describe exponents θ in (∗) in terms of coefficients of an
expansion of Φ with respect to a suitable wavelet basis. This in turn allows us to formulate some
necessary condition and some sufficient condition for (∗) in terms of regularity of Φ.
The talk is based on paper [1], joint with Paul F.X. Müller (J.Kepler University, Linz, Austria).
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