The Gaussian Capacities

Wen Yuan

Beijing Normal University

(Joint works with Liguang Liu, Jie Xiao and Dachun Yang)

International Conference

"New perspectives in the theory of function spaces and their applications" (NPFSA-2017) September 17-23, 2017 Będlewo (Poland)

Outline

- 2 Gaussian-Sobolev spaces
- 3 Capacitary characterization of Sobolev embeddings
- Capacitary-isoperimetric and -Poincaré inequalities

1. Motivation

æ

メロトメ 聞き メヨトメヨト

Sobolev and isoperimetric inequalities

Maz'ya in 1960s proved the following are equivalent:

• Sobolev inequality: for every $f \in C_c^{\infty}(\mathbb{R}^n)$,

$$\left(\int_{\mathbb{R}^n} |f|^{\frac{n}{n-1}} dx\right)^{\frac{n-1}{n}} \lesssim \int_{\mathbb{R}^n} |\nabla f| dx; \quad (\dot{W}^{1,1}(\mathbb{R}^n) \subset L^{\frac{n}{n-1}}(\mathbb{R}^n))$$

• Isoperimetric inequality: for smooth domains E in \mathbb{R}^n ,

$$|E|^{\frac{n-1}{n}} \lesssim \mathcal{H}^{n-1}(\partial E).$$

Here \mathcal{H}^{n-1} means the (n-1)-dimensional Hausdorff measure.

- [M60] V. Maz'ya, Dokl. Akad. Nauk SSSR 133 (1960), 527-530 (Russian).
- [M61] V. Maz'ya, Dokl. Akad. Nauk SSSR 140 (1961), 299-302. (Russian).

More general, for open $\Omega \subset \mathbb{R}^n$ and $q \in [1, \infty)$, the following are equivalent:

• Sobolev inequality: for every $f \in C_c^{\infty}(\Omega)$,

$$\left(\int_{\Omega}|f|^{q}\,d\mu\right)^{1/q}\lesssim\int_{\Omega}|\nabla f|\,dx;\;\;(\dot{W}^{1,1}(\Omega)\subset L^{q}(\Omega,\mu))$$

 Isoperimetric inequality: for every bounded open set *E* with smooth boundary, *E* ⊂ Ω,

$$[\mu(E)]^{1/q} \lesssim \mathcal{H}^{n-1}(\partial E).$$

• [M03] V. Maz'ya, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 307 - 340, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003

When the gradient is integrable to a power> 1, the isoperimetric inequality has to be replaced with an isocapacitary inequality: for open $\Omega \subset \mathbb{R}^n$ and $q \ge p \ge 1$, the following are equivalent:

• Sobolev inequality: for every $f \in C_c^{\infty}(\Omega)$,

$$\left(\int_{\Omega}|f|^{q}\,d\mu\right)^{1/q}\lesssim \|
abla f\|_{L^{p}(\Omega)};\ (\dot{W}^{1,p}(\mathbb{R}^{n})\subset L^{q}(\Omega,\mu))$$

 Isocapacitary inequality: for every bounded open set *E* with smooth boundary, *E* ⊂ Ω,

$$[\mu(E)]^{p/q} \lesssim \operatorname{cap}_{p}(\overline{E}),$$

with Sobolev *p*-capacity $\operatorname{cap}_{p}(A) := \inf_{C_{c}^{\infty}(\Omega) \ni u \ge 1 \text{ on } A} \int_{\Omega} |\nabla u|^{p} dx.$

• [M85] V. Maz'ya, Sobolev Spaces, Springer-Verlag, 1985.

Capacity

- Capacity: A real valued function *C* defined on all subsets of a metric space \mathcal{X} is called a capacity if it is
 - (non-negative): $C(E) \ge 0$, for all $E \subset \mathcal{X}$.
 - (monotonic): If $E_1 \subset E_2 \subset \mathcal{X}$, then $C(E_1) \leq C(E_2)$.

(

(countably subadditive): For any sequence $\{E_j\}_{j=1}^{\infty}$ of subsets of \mathcal{X} ,

$$C\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} C(E_j).$$

• The notion of capacity is originated from physics (electrostatics), and nowadays widely used in analysis, geometry and mathematical physics.

Generalizations

- The equivalence between the Sobolev inequalities and the isoperimetric-isocapacitary inequality have be generalized to many other settings, including:
 - * Weighted Euclidean spaces (Turesson 00)
 - * Riemannian manifolds (Maz'ya 03,)
 - * graph (Maz'ya 03,)
 - * metric spaces with doubling measures (Shanmugalingam 00,

Kinnunen-Korte 08, ...)

- Applications: PDEs, Potential Analysis,...
- All above need doubling measure! How about non-doubling cases?

Doubling measure:

A measure μ on a metric space X is called doubling, if

 $\mu(B(x, 2r)) \leq C\mu(B(x, r))$

for all $x \in X$ and $r \in (0, \frac{\dim X}{2})$.

• The notion of doubling measures was introduced by Coifman and Weiss [CW71,CW77] and known as a basic assumption for many classical theory of harmonic analysis.

• [CW71] R. Coifman and G. Weiss, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971.

• [CW77] R. Coifman and G. Weiss, Bull. Amer. Math. Soc. 83 (1977), 569-645.

Gaussian Spaces

- $\mathbb{G}^n := (\mathbb{R}^n, dV_\gamma)$ the Gaussian space
 - $dV_{\gamma}(x) := \gamma(x)dx := (2\pi)^{-\frac{n}{2}} e^{-\frac{|x|^2}{2}} dx$ the Gaussian measure
 - arises from probability theory, quantum mechanics,
 - a typical non-doubling probability measure:

$$V_{\gamma}(\mathbb{R}^n) = \int_{\mathbb{R}^n} \gamma(x) \, dx = 1.$$

 C_c(ℝⁿ) — the class of continuous functions with compact support in ℝⁿ

 $C_c^k(\mathbb{R}^n)$ — all *k*-times continuously differentiable functions with compact support in \mathbb{R}^n

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gaussian Poincaré Inequality

• One key property of Gaussian space is the Gaussian Poincaré Inequality: $\forall f \in C_c^1(\mathbb{R}^n)$,

$$\left(\int_{\mathbb{R}^n} \left| f - \int_{\mathbb{R}^n} f \, dV_{\gamma} \right|^p \, dV_{\gamma} \right)^{1/p} \leq C \left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma} \right)^{1/p}$$

- *p* ∈ [1,∞): [P86] G. Pisier, Lecture Notes in Math. 1206, Springer, Berlin, 1986, 167-241.
- Sharp constant:
 - *p* = 1: [L96] M. Ledoux, Lecture Notes in Math. 1648, Springer, Berlin, 1996, 165-264.
 - *p* = 2: [CMN10] V. Caselles, M. Jr. Miranda and M. Novaga, J. Funct. Anal. 259 (2010), 1491-1516.
 - *p* ≥ 2: [Z14] Q. Zeng, J. Funct. Anal. 266 (2014), 3236-3264.

• An equivalent statement of the Gaussian Poincaré Inequality is as follows: $\forall f \in C_c^1(\mathbb{R}^n)$,

$$\left(\int_{\mathbb{R}^n} |f|^p \, dV_{\gamma}\right)^{1/p} \leq C\left[\left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|\right]$$

Write

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} := \left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|.$$

Then the above Sobolev type inequality is equivalent to the Sobolev embedding

$$N^{1,p}(\mathbb{G}^n) \subset L^p(V_{\gamma}).$$

< 口 > < 同 >

Is it equivalent to some isocapacitary inequality?

• An equivalent statement of the Gaussian Poincaré Inequality is as follows: $\forall f \in C_c^1(\mathbb{R}^n)$,

$$\left(\int_{\mathbb{R}^n} |f|^p \, dV_{\gamma}\right)^{1/p} \leq C\left[\left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|\right]$$

Write

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} := \left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|.$$

Then the above Sobolev type inequality is equivalent to the Sobolev embedding

$$W^{1,p}(\mathbb{G}^n) \subset L^p(V_{\gamma}).$$

Is it equivalent to some isocapacitary inequality?

Question: given a non-negative Borel measure μ on \mathbb{R}^n and $q \in (0, \infty)$, when we have the embedding

 $W^{1,p}(\mathbb{G}^n) \subset L^q(\mu)$?

More precise, when

$$\left(\int_{\mathbb{R}^n} |f|^q \, d\mu\right)^{1/q} \leq C\left(\left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|\right)$$

hold uniformly for suitable functions f with a positive constant C being independent of f?

To answer this question, we need to develop capacities in the Gaussian setting.

Question: given a non-negative Borel measure μ on \mathbb{R}^n and $q \in (0, \infty)$, when we have the embedding

 $W^{1,p}(\mathbb{G}^n) \subset L^q(\mu)$?

More precise, when

$$\left(\int_{\mathbb{R}^n} |f|^q \, d\mu\right)^{1/q} \leq C\left(\left(\int_{\mathbb{R}^n} |\nabla f|^p \, dV_{\gamma}\right)^{1/p} + \left|\int_{\mathbb{R}^n} f \, dV_{\gamma}\right|\right)$$

hold uniformly for suitable functions f with a positive constant C being independent of f?

To answer this question, we need to develop capacities in the Gaussian setting.

2. Gaussian-Sobolev spaces and capacities

Gaussian-Sobolev spaces

Definition 1 (Gaussian-Sobolev spaces)

Let $p \in [1, \infty]$. Define the Gaussian-Sobolev space $W^{1,p}(\mathbb{G}^n)$ to be the class of all $f \in L^p(\mathbb{G}^n)$ satisfying that $\nabla f \in L^p(\mathbb{G}^n)$. For any $f \in W^{1,p}(\mathbb{G}^n)$, define

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} := \begin{cases} \left(\|f\|_{L^p(\mathbb{G}^n)}^p + \|\nabla f\|_{L^p(\mathbb{G}^n)}^p\right)^{\frac{1}{p}} & \text{as} \quad p \in [1,\infty), \\ \|f\|_{L^{\infty}(\mathbb{G}^n)} + \|\nabla f\|_{L^{\infty}(\mathbb{G}^n)} & \text{as} \quad p = \infty. \end{cases}$$

• It is easy to show that for any $f \in C_c^1(\mathbb{R}^n)$ and $p \in [1, \infty)$,

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} \sim \|\nabla f\|_{L^p(\mathbb{G}^n)} + \|f\|_{L^1(\mathbb{G}^n)} \simeq \|\nabla f\|_{L^p(\mathbb{G}^n)} + \left|\int_{\mathbb{R}^n} f \, dV_\gamma\right|.$$

Gaussian-Sobolev spaces

Definition 1 (Gaussian-Sobolev spaces)

Let $p \in [1, \infty]$. Define the Gaussian-Sobolev space $W^{1,p}(\mathbb{G}^n)$ to be the class of all $f \in L^p(\mathbb{G}^n)$ satisfying that $\nabla f \in L^p(\mathbb{G}^n)$. For any $f \in W^{1,p}(\mathbb{G}^n)$, define

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} := \begin{cases} \left(\|f\|_{L^p(\mathbb{G}^n)}^p + \|\nabla f\|_{L^p(\mathbb{G}^n)}^p\right)^{\frac{1}{p}} & \text{as} \quad p \in [1,\infty);\\ \|f\|_{L^{\infty}(\mathbb{G}^n)} + \|\nabla f\|_{L^{\infty}(\mathbb{G}^n)} & \text{as} \quad p = \infty. \end{cases}$$

• It is easy to show that for any $f \in C_c^1(\mathbb{R}^n)$ and $p \in [1, \infty)$,

$$\|f\|_{W^{1,p}(\mathbb{G}^n)} \sim \|\nabla f\|_{L^p(\mathbb{G}^n)} + \|f\|_{L^1(\mathbb{G}^n)} \simeq \|\nabla f\|_{L^p(\mathbb{G}^n)} + \left|\int_{\mathbb{R}^n} f \, dV_\gamma\right|.$$

Density Properties of Sobolev spaces

Density Properties

Let $p \in [1, \infty)$. Then

(i) the set $C_c^1(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{G}^n)$, namely, for any $f \in W^{1,p}(\mathbb{G}^n)$, there exists a sequence of functions $\{f_j\}_{j\in\mathbb{N}} \subset C_c^1(\mathbb{R}^n)$ such that

$$\lim_{j\to\infty}\|f_j-f\|_{W^{1,p}(\mathbb{G}^n)}=0;$$

(ii) the set

$$\left\{f\in \mathit{C}^{1}_{c}(\mathbb{R}^{n}):\ \int_{\mathbb{R}^{n}}f\,dV_{\gamma}=0
ight\}$$

is dense in

$$\left\{f\in W^{1,p}(\mathbb{G}^n):\ \int_{\mathbb{R}^n}f\,dV_\gamma=0
ight\}.$$

э

Definition 2 (Gaussian-Sobolev capacity)

Let $p \in [1, \infty]$ and $E \subset \mathbb{R}^n$ be an arbitrary set. Let

$$\mathcal{A}_{\mathcal{P}}(E) := \left\{ f \in W^{1,\mathcal{P}}(\mathbb{G}^n) : \ E \subset \{ x \in \mathbb{R}^n : \ f(x) \geq 1 \}^\circ
ight\}.$$

Define the Gaussian-Sobolev *p*-capacity of *E* as:

$$\operatorname{Cap}_{\rho}(E; \mathbb{G}^{n}) := \begin{cases} \inf \left\{ \|f\|_{W^{1,p}(\mathbb{G}^{n})}^{p} : f \in \mathcal{A}_{\rho}(E) \right\}, & \rho \in [1,\infty); \\ \inf \left\{ \|f\|_{W^{1,\infty}(\mathbb{G}^{n})} : f \in \mathcal{A}_{\infty}(E) \right\}, & \rho = \infty. \end{cases}$$

* Obviously, $\operatorname{Cap}_{\rho}(E) \gtrsim V_{\gamma}(E)$.

Equivalent descriptions

Let $p \in [1, \infty)$ and $E \subset \mathbb{R}^n$ be an arbitrary set. Then

$$\operatorname{Cap}_{\rho}(E; \mathbb{G}^{n}) \sim \inf \left\{ \left[\|\nabla f\|_{L^{p}(\mathbb{G}^{n})} + \|f\|_{L^{1}(\mathbb{G}^{n})} \right]^{p} : f \in \mathcal{A}_{\rho}(E) \right\}$$
$$\sim \inf \left\{ \left[\|\nabla f\|_{L^{p}(\mathbb{G}^{n})} + \left| \int_{\mathbb{R}^{n}} f \, dV_{\gamma} \right| \right]^{p} : f \in \mathcal{A}_{\rho}(E) \right\}$$
$$\sim \inf \left\{ \|f\|_{W^{1,\rho}(\mathbb{G}^{n})}^{p} : f \geq 0, f \in \mathcal{A}_{\rho}(E) \right\}.$$

Basic properties

Basic properties of capacities

Let $p \in [1, \infty)$. Then Cap_p satisfies:

- (i) $\operatorname{Cap}_{p}(\emptyset; \mathbb{G}^{n}) = 0$ and $\operatorname{Cap}_{p}(\mathbb{R}^{n}; \mathbb{G}^{n}) \leq 1$.
- (ii) If $E_1 \subseteq E_2 \subset \mathbb{R}^n$, then $\operatorname{Cap}_p(E_1; \mathbb{G}^n) \leq \operatorname{Cap}_p(E_2; \mathbb{G}^n)$.
- (iii) For any sequence $\{E_j\}_{j=1}^{\infty}$ of subsets of \mathbb{R}^n ,

$$\operatorname{Cap}_{\rho}\left(\bigcup_{j=1}^{\infty} E_{j}; \mathbb{G}^{n}\right) \leq \sum_{j=1}^{\infty} \operatorname{Cap}_{\rho}(E_{j}; \mathbb{G}^{n}).$$

(iv) For any $1 \le p < q < \infty$ and any set $E \subset \mathbb{R}^n$,

$$2^{-1/p}[\operatorname{Cap}_p(E; \mathbb{G}^n)]^{1/p} \le 2^{-1/q}[\operatorname{Cap}_q(E; \mathbb{G}^n)]^{1/q}.$$

(v) for $p \in (1, \infty)$ and any Suslin set E, $\operatorname{Cap}_{p}(E; \mathbb{G}^{n}) = \sup\{\operatorname{Cap}_{p}(K; \mathbb{G}^{n}) : \operatorname{compact} K \subset E\};$ (vi) for $p \in (1, \infty)$ and any set E, $\operatorname{Cap}_{p}(E; \mathbb{G}^{n}) = \inf\{\operatorname{Cap}_{p}(O; \mathbb{G}^{n}) : \operatorname{open} O \supset E\}.$

• Suslin set (analytic set) — a continuous image of a Polish space (separable completely metrizable topological space)

(vii) For any sequence $\{K_j\}_{j=1}^{\infty}$ of compact subsets of \mathbb{R}^n such that $K_1 \supseteq K_2 \supseteq \cdots$,

$$\lim_{j\to\infty}\operatorname{Cap}_{\rho}\left(K_{j};\ \mathbb{G}^{n}\right)=\operatorname{Cap}_{\rho}\left(\bigcap_{j=1}^{\infty}K_{j};\ \mathbb{G}^{n}\right)$$

(viii) When $p \in (1, \infty)$, for any sequence $\{E_j\}_{j=1}^{\infty}$ of subsets of \mathbb{R}^n such that $E_1 \subseteq E_2 \subseteq \cdots$,

$$\lim_{j\to\infty} \operatorname{Cap}_{\rho} \left(E_{j}; \mathbb{G}^{n} \right) = \operatorname{Cap}_{\rho} \left(\bigcup_{j=1}^{\infty} E_{j}; \mathbb{G}^{n} \right)$$

* (vii) can be used to show the sublinearity of the functional

$$f\mapsto \int_{\mathbb{R}^n} f \, d\mathrm{Cap}_{\rho} := \int_0^\infty \mathrm{Cap}_{\rho} \{x\in \mathbb{R}^n: f(x)>\lambda\} \, d\lambda$$

for positive functions *f*.

(WEN YUAN BNU)

∞ -capacities

Properties of ∞ -capacities

For any set $E \subset \mathbb{R}^n$,

$$\lim_{\rho\to\infty} [\operatorname{Cap}_{\rho}(E; \mathbb{G}^n)]^{1/\rho} \leq \operatorname{Cap}_{\infty}(E; \mathbb{G}^n) \leq 2 \lim_{\rho\to\infty} [\operatorname{Cap}_{\rho}(E; \mathbb{G}^n)]^{1/\rho}.$$

and

$$\operatorname{Cap}_{\infty}(E; \mathbb{G}^{n}) \sim \inf \left\{ \|\nabla f\|_{L^{\infty}(\mathbb{G}^{n})} + \|f\|_{L^{1}(\mathbb{G}^{n})} : f \in \mathcal{A}_{\infty}(E) \right\}$$
$$\sim \inf \left\{ \|\nabla f\|_{L^{\infty}(\mathbb{G}^{n})} + \left| \int_{\mathbb{R}^{n}} f \, dV_{\gamma} \right| : f \in \mathcal{A}_{\infty}(E) \right\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

3. Capacitary characterization of Sobolev embeddings

Capacitary inequality

A capacitary inequality

Let $1 \le p < \infty$ and $f \in W^{1,p}(\mathbb{G}^n)$ be continuous. For any $t \in (0,\infty)$ set

$$E_t(f):=\{x\in\mathbb{R}^n: |f(x)|>t\}.$$

Then

$$\int_0^\infty \operatorname{Cap}_{\rho}(E_t(f); \mathbb{G}^n) dt^{\rho} \lesssim \|f\|_{W^{1,\rho}(\mathbb{G}^n)}^{\rho}.$$

*

$$W^{1,p}(\mathbb{G}^n) \subset L^p(\operatorname{Cap}_p) \subset L^p(V_\gamma)$$

Theorem 1

Let $1 \le p \le q < \infty$ and μ be a non-negative Radon measure. Then the following two assertions are equivalent.

(i) There exists a positive constant *C* such that for all compact sets $K \subset \mathbb{R}^n$,

 $\mu(K) \leq C[\operatorname{Cap}_p(K; \mathbb{G}^n)]^{q/p}.$

(ii) There exists a positive constant *C* such that for all functions $f \in C(\mathbb{R}^n) \cap W^{1,p}(\mathbb{G}^n)$,

$$\left(\int_{\mathbb{R}^n} |f|^q \, d\mu\right)^{1/q} \leq C \|f\|_{W^{1,p}(\mathbb{G}^n)}.$$

Theorem 2

Let $p \in [1, \infty)$, $0 < q < p < \infty$ and μ be a non-negative Radon measure. Then the following two conditions are equivalent:

(i) The capacitary minimizing function

 $h_{\mu,\rho}(t) := \inf \left\{ \operatorname{Cap}_{\rho}(K; \mathbb{G}^n) : K \text{ is compact with } \mu(K) \ge t \right\}$

satisfies

$$\|h_{\mu,p}\|:=\left(\int_0^\infty \frac{dt^{p/(p-q)}}{[h_{\mu,p}(t)]^{q/(p-q)}}\right)^{(p-q)/p}<\infty.$$

(ii) There exists a positive constant *C* such that for all functions $f \in C(\mathbb{R}^n) \cap W^{1,p}(\mathbb{G}^n)$,

$$\left(\int_{\mathbb{R}^n} |f|^q \, d\mu\right)^{1/q} \leq C \|f\|_{W^{1,p}(\mathbb{G}^n)}.$$

4. Capacitary-isoperimeter and -Poincaré inequalities

Gaussian Minkowski content

For every Borel set $A \subset \mathbb{R}^n$, define the Gaussian Minkowski content of its boundary ∂A as

$$\mathcal{O}_{n-1}(\partial A) := \liminf_{r \to 0} \frac{V_{\gamma}(A_r) - V_{\gamma}(A)}{r},$$

with $A_r := \{x \in \mathbb{R}^n : \text{ dist}(x, A) \leq r\}.$

* If the Borel set $A \subset \mathbb{R}^n$ has smooth boundary ∂A , then

$$\mathcal{O}_{n-1}(\partial A) = \int_{\partial A} \gamma(x) \, d\mathcal{H}_{n-1}(x).$$

* The Cheeger isoperimetric inequality on \mathbb{G}^n : for any Borel set $A \subset \mathbb{R}^n$ with smooth boundary ∂A ,

$$\frac{\mathcal{O}_{n-1}(\partial A)}{V_{\gamma}(A) \, V_{\gamma}(\mathbb{R}^n \setminus A)} \geq 2\sqrt{\frac{2}{\pi}}.$$

[L96] M. Ledoux, Lecture Notes in Math. 1648, Springer, Berlin, 1996, 165-264.

(WEN YUAN BNU)

Theorem 3

If $K \subset \mathbb{R}^n$ is compact, then

 $\operatorname{Cap}_{1}(K; \mathbb{G}^{n}) = \inf \{ \mathcal{O}_{n-1}(\partial O) + V_{\gamma}(O) :$

open $O \supset K$ with compact \overline{O} and smooth ∂O .

• Tool: Coarea formula for the Gaussian space [L96]:

For a smooth function f on \mathbb{R}^n ,

$$\int_{\mathbb{R}^n} |\nabla f| \, dV_{\gamma} = \int_0^\infty \left(\int_{\{x \in \mathbb{R}^n : \, |f(x)| = s\}} \gamma(x) \, d\mathcal{H}_{n-1}(x) \right) \, ds,$$

where $d\mathcal{H}_{n-1}$ is the Hausdorff measure of dimension n-1 on the surface $\{x \in \mathbb{R}^n : |f(x)| = s\}$.

Theorem 4

The following three statements are equivalent:

 (i) (Cheeger isoperimetric inequality) For any open set O ⊂ ℝⁿ with smooth boundary,

$$\mathcal{O}_{n-1}(\partial O) \geq 2\sqrt{\frac{2}{\pi}} V_{\gamma}(O) V_{\gamma}(\mathbb{R}^n \setminus O).$$

(ii) For any smooth function f,

$$egin{aligned} &\int_{\mathbb{R}^n} |
abla f| \, dV_\gamma \geq 2\sqrt{rac{2}{\pi}} \int_{-\infty}^\infty V_\gamma(\{x\in\mathbb{R}^n:\,f(x)>s\}) \ & imes V_\gamma(\{x\in\mathbb{R}^n:\,f(x)\leq s\}) \, ds. \end{aligned}$$

(iii) (Gaussian 1-Poincaré/Sobolev inequality) For any smooth function f with $\int_{\mathbb{R}^n} f \, dV_{\gamma} = 0$, $\int_{\mathbb{R}^n} |\nabla f| \, dV_{\gamma} \ge \sqrt{\frac{2}{\pi}} \int_{\mathbb{R}^n} |f| \, dV_{\gamma}.$

(WEN YUAN BNU)

- Key tool:
 - * Doubling case

- The boxing inequality (unknown for the Gaussian setting);

- * Gaussian case
- Capacities Cap_{BV} of functions of bounded variations;
- Equivalence $\mathrm{Cap}_1 \sim \mathrm{Cap}_{\mathrm{BV}}$

Thank you for your attention!

Image: A matrix and a matrix

]) → (])