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1. Motivation
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Sobolev and isoperimetric inequalities

Maz’ya in 1960s proved the following are equivalent:

∙ Sobolev inequality: for every f ∈ C∞
c (Rn),

(︀ ∫︁
Rn

|f |
n

n−1 dx
)︀ n−1

n .
∫︁
Rn

|∇f |dx ; (Ẇ 1,1(Rn) ⊂ L
n

n−1 (Rn))

∙ Isoperimetric inequality: for smooth domains E in Rn,

|E |
n−1

n . ℋn−1(𝜕E).

Here ℋn−1 means the (n − 1)-dimensional Hausdorff measure.

∙ [M60] V. Maz’ya, Dokl. Akad. Nauk SSSR 133 (1960), 527-530 (Russian).

∙ [M61] V. Maz’ya, Dokl. Akad. Nauk SSSR 140 (1961), 299-302. (Russian).
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More general, for open Ω ⊂ Rn and q ∈ [1,∞), the following are

equivalent:

∙ Sobolev inequality: for every f ∈ C∞
c (Ω),

(︀ ∫︁
Ω
|f |q d𝜇

)︀1/q
.
∫︁
Ω
|∇f |dx ; (Ẇ 1,1(Ω) ⊂ Lq(Ω, 𝜇))

∙ Isoperimetric inequality: for every bounded open set E with

smooth boundary, E ⊂ Ω,

[𝜇(E)]1/q . ℋn−1(𝜕E).

∙ [M03] V. Maz’ya, Heat kernels and analysis on manifolds, graphs, and metric

spaces (Paris, 2002), 307–340, Contemp. Math., 338, Amer. Math. Soc.,

Providence, RI, 2003
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When the gradient is integrable to a power> 1, the isoperimetric

inequality has to be replaced with an isocapacitary inequality: for open

Ω ⊂ Rn and q ≥ p ≥ 1, the following are equivalent:

∙ Sobolev inequality: for every f ∈ C∞
c (Ω),

(︀ ∫︁
Ω
|f |q d𝜇

)︀1/q
. ‖∇f‖Lp(Ω); (Ẇ 1,p(Rn) ⊂ Lq(Ω, 𝜇))

∙ Isocapacitary inequality: for every bounded open set E with

smooth boundary, E ⊂ Ω,

[𝜇(E)]p/q . capp(E),

with Sobolev p-capacity capp(A) := infC∞
c (Ω)∋u≥1 on A

∫︀
Ω |∇u|p dx .

∙ [M85] V. Maz’ya, Sobolev Spaces, Springer-Verlag, 1985.
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Capacity

Capacity: A real valued function C defined on all subsets of a

metric space 𝒳 is called a capacity if it is

1 (non-negative): C(E) ≥ 0, for all E ⊂ 𝒳 .

2 (monotonic): If E1 ⊂ E2 ⊂ 𝒳 , then C(E1) ≤ C(E2).

3 (countably subadditive): For any sequence {Ej}∞j=1 of subsets of 𝒳 ,

C

⎛⎝∞⋃︁
j=1

Ej

⎞⎠ ≤
∞∑︁
j=1

C(Ej).

∙ The notion of capacity is originated from physics (electrostatics), and

nowadays widely used in analysis, geometry and mathematical

physics.
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Generalizations

∙ The equivalence between the Sobolev inequalities and the

isoperimetric-isocapacitary inequality have be generalized to many

other settings, including:

* Weighted Euclidean spaces (Turesson 00)

* Riemannian manifolds (Maz’ya 03, ....)

* graph (Maz’ya 03, ....)

* metric spaces with doubling measures (Shanmugalingam 00,

Kinnunen-Korte 08, ... )

∙ Applications: PDEs, Potential Analysis,...

∙ All above need doubling measure! How about non-doubling cases?
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Doubling measure:

A measure 𝜇 on a metric space X is called doubling, if

𝜇(B(x ,2r)) ≤ C𝜇(B(x , r))

for all x ∈ X and r ∈ (0, diam X
2 ).

∙ The notion of doubling measures was introduced by Coifman and

Weiss [CW71,CW77] and known as a basic assumption for many

classical theory of harmonic analysis.

∙ [CW71] R. Coifman and G. Weiss, Lecture Notes in Math. 242, Springer-Verlag,

Berlin-New York, 1971.

∙ [CW77] R. Coifman and G. Weiss, Bull. Amer. Math. Soc. 83 (1977), 569-645.
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Gaussian Spaces

∙ Gn := (Rn,dV𝛾) — the Gaussian space

∙ dV𝛾(x) := 𝛾(x)dx := (2𝜋)−
n
2 e− |x|2

2 dx — the Gaussian measure

∙ arises from probability theory, quantum mechanics, ....

∙ a typical non-doubling probability measure:

V𝛾(Rn) =

∫︁
Rn

𝛾(x)dx = 1.

∙ Cc(Rn) — the class of continuous functions with compact support

in Rn

Ck
c (Rn) — all k -times continuously differentiable functions with

compact support in Rn
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Gaussian Poincaré Inequality

∙ One key property of Gaussian space is the Gaussian Poincaré

Inequality: ∀ f ∈ C1
c (Rn),(︂∫︁

Rn

⃒⃒⃒⃒
f −

∫︁
Rn

f dV𝛾

⃒⃒⃒⃒p
dV𝛾

)︂1/p

≤ C
(︂∫︁

Rn
|∇f |p dV𝛾

)︂1/p

.

∙ p ∈ [1,∞): [P86] G. Pisier, Lecture Notes in Math. 1206, Springer, Berlin,

1986, 167-241.

∙ Sharp constant:

∙ p = 1: [L96] M. Ledoux, Lecture Notes in Math. 1648, Springer, Berlin,

1996, 165-264.

∙ p = 2: [CMN10] V. Caselles, M. Jr. Miranda and M. Novaga, J. Funct.

Anal. 259 (2010), 1491-1516.

∙ p ≥ 2: [Z14] Q. Zeng, J. Funct. Anal. 266 (2014), 3236-3264.
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∙ An equivalent statement of the Gaussian Poincaré Inequality is as

follows: ∀ f ∈ C1
c (Rn),(︂∫︁

Rn
|f |p dV𝛾

)︂1/p

≤ C

[︃(︂∫︁
Rn

|∇f |p dV𝛾

)︂1/p

+

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒]︃
.

∙ Write

‖f‖W 1,p(Gn) :=

(︂∫︁
Rn

|∇f |p dV𝛾

)︂1/p

+

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒
.

Then the above Sobolev type inequality is equivalent to the Sobolev

embedding

W 1,p(Gn) ⊂ Lp(V𝛾).

Is it equivalent to some isocapacitary inequality?
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Question: given a non-negative Borel measure 𝜇 on Rn and

q ∈ (0,∞), when we have the embedding

W 1,p(Gn) ⊂ Lq(𝜇)?

More precise, when(︂∫︁
Rn

|f |q d𝜇
)︂1/q

≤ C

(︃(︂∫︁
Rn

|∇f |p dV𝛾

)︂1/p

+

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒)︃

hold uniformly for suitable functions f with a positive constant C being

independent of f?

To answer this question, we need to develop capacities in the

Gaussian setting.
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2. Gaussian-Sobolev spaces and
capacities
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Gaussian-Sobolev spaces

Definition 1 (Gaussian-Sobolev spaces)

Let p ∈ [1,∞]. Define the Gaussian-Sobolev space W 1,p(Gn) to be the

class of all f ∈ Lp(Gn) satisfying that ∇f ∈ Lp(Gn). For any

f ∈ W 1,p(Gn), define

‖f‖W 1,p(Gn) :=

⎧⎪⎨⎪⎩
(︁
‖f‖p

Lp(Gn) + ‖∇f‖p
Lp(Gn)

)︁ 1
p as p ∈ [1,∞);

‖f‖L∞(Gn) + ‖∇f‖L∞(Gn) as p = ∞.

∙ It is easy to show that for any f ∈ C1
c (Rn) and p ∈ [1,∞),

‖f‖W 1,p(Gn) ∼ ‖∇f‖Lp(Gn) + ‖f‖L1(Gn) ≃ ‖∇f‖Lp(Gn) +

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒
.
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Density Properties of Sobolev spaces

Density Properties
Let p ∈ [1,∞). Then

(i) the set C1
c (Rn) is dense in W 1,p(Gn), namely, for any f ∈ W 1,p(Gn),

there exists a sequence of functions {fj}j∈N ⊂ C1
c (Rn) such that

lim
j→∞

‖fj − f‖W 1,p(Gn) = 0;

(ii) the set {︂
f ∈ C1

c (Rn) :

∫︁
Rn

f dV𝛾 = 0
}︂

is dense in {︂
f ∈ W 1,p(Gn) :

∫︁
Rn

f dV𝛾 = 0
}︂
.
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Gaussian-Sobolev capacity

Definition 2 (Gaussian-Sobolev capacity)
Let p ∈ [1,∞] and E ⊂ Rn be an arbitrary set. Let

𝒜p(E) :=
{︁

f ∈ W 1,p(Gn) : E ⊂ {x ∈ Rn : f (x) ≥ 1}∘
}︁
.

Define the Gaussian-Sobolev p-capacity of E as:

Capp(E ; Gn) :=

⎧⎪⎨⎪⎩inf
{︁
‖f‖p

W 1,p(Gn)
: f ∈ 𝒜p(E)

}︁
, p ∈ [1,∞);

inf
{︁
‖f‖W 1,∞(Gn) : f ∈ 𝒜∞(E)

}︁
, p = ∞.

* Obviously, Capp(E) & V𝛾(E).
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Equivalent descriptions
Let p ∈ [1,∞) and E ⊂ Rn be an arbitrary set. Then

Capp(E ; Gn) ∼ inf
{︂[︁

‖∇f‖Lp(Gn) + ‖f‖L1(Gn)

]︁p
: f ∈ 𝒜p(E)

}︂
∼ inf

{︂[︂
‖∇f‖Lp(Gn) +

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒]︂p

: f ∈ 𝒜p(E)

}︂
∼ inf

{︁
‖f‖p

W 1,p(Gn)
: f ≥ 0, f ∈ 𝒜p(E)

}︁
.
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Basic properties

Basic properties of capacities
Let p ∈ [1,∞). Then Capp satisfies:

(i) Capp(∅ ; Gn) = 0 and Capp(Rn ; Gn) ≤ 1.

(ii) If E1 ⊆ E2 ⊂ Rn, then Capp(E1; Gn) ≤ Capp(E2; Gn).

(iii) For any sequence {Ej}∞j=1 of subsets of Rn,

Capp

⎛⎝∞⋃︁
j=1

Ej ; Gn

⎞⎠ ≤
∞∑︁

j=1

Capp(Ej ; Gn).

(iv) For any 1 ≤ p < q < ∞ and any set E ⊂ Rn,

2−1/p[Capp(E ; Gn)]1/p ≤ 2−1/q[Capq(E ; Gn)]1/q.
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(v) for p ∈ (1,∞) and any Suslin set E ,

Capp(E ; Gn) = sup{Capp(K ; Gn) : compact K ⊂ E};

(vi) for p ∈ (1,∞) and any set E ,

Capp(E ; Gn) = inf{Capp(O; Gn) : open O ⊃ E}.

∙ Suslin set (analytic set) — a continuous image of a Polish space

(separable completely metrizable topological space)
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(vii) For any sequence {Kj}∞j=1 of compact subsets of Rn such that

K1 ⊇ K2 ⊇ · · · ,

lim
j→∞

Capp
(︀
Kj ; Gn)︀ = Capp

⎛⎝∞⋂︁
j=1

Kj ; Gn

⎞⎠ .

(viii) When p ∈ (1,∞), for any sequence {Ej}∞j=1 of subsets of Rn such

that E1 ⊆ E2 ⊆ · · · ,

lim
j→∞

Capp
(︀
Ej ; Gn)︀ = Capp

⎛⎝∞⋃︁
j=1

Ej ; Gn

⎞⎠ .

* (vii) can be used to show the sublinearity of the functional

f ↦→
∫︁
Rn

f dCapp :=

∫︁ ∞

0
Capp{x ∈ Rn : f (x) > 𝜆}d𝜆

for positive functions f .
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∞-capacities

Properties of ∞-capacities
For any set E ⊂ Rn,

lim
p→∞

[Capp(E ; Gn)]1/p ≤ Cap∞(E ; Gn) ≤ 2 lim
p→∞

[Capp(E ; Gn)]1/p.

and

Cap∞(E ; Gn) ∼ inf
{︁
‖∇f‖L∞(Gn) + ‖f‖L1(Gn) : f ∈ 𝒜∞(E)

}︁
∼ inf

{︂
‖∇f‖L∞(Gn) +

⃒⃒⃒⃒∫︁
Rn

f dV𝛾

⃒⃒⃒⃒
: f ∈ 𝒜∞(E)

}︂
.
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3. Capacitary characterization of Sobolev
embeddings
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Capacitary inequality

A capacitary inequality

Let 1 ≤ p < ∞ and f ∈ W 1,p(Gn) be continuous. For any t ∈ (0,∞) set

Et(f ) := {x ∈ Rn : |f (x)| > t}.

Then ∫︁ ∞

0
Capp(Et(f ); Gn)dtp . ‖f‖p

W 1,p(Gn)
.

*
W 1,p(Gn) ⊂ Lp(Capp) ⊂ Lp(V𝛾)
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Theorem 1
Let 1 ≤ p ≤ q < ∞ and 𝜇 be a non-negative Radon measure. Then

the following two assertions are equivalent.

(i) There exists a positive constant C such that for all compact sets

K ⊂ Rn,

𝜇(K ) ≤ C[Capp(K ; Gn)]q/p.

(ii) There exists a positive constant C such that for all functions

f ∈ C(Rn) ∩ W 1,p(Gn),(︂∫︁
Rn

|f |q d𝜇
)︂1/q

≤ C‖f‖W 1,p(Gn).
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Theorem 2
Let p ∈ [1,∞), 0 < q < p < ∞ and 𝜇 be a non-negative Radon

measure. Then the following two conditions are equivalent:

(i) The capacitary minimizing function

h𝜇,p(t) := inf
{︀

Capp(K ; Gn) : K is compact with 𝜇(K ) ≥ t
}︀

satisfies

‖h𝜇,p‖ :=

(︃∫︁ ∞

0

dtp/(p−q)

[h𝜇,p(t)]q/(p−q)

)︃(p−q)/p

< ∞.

(ii) There exists a positive constant C such that for all functions

f ∈ C(Rn) ∩ W 1,p(Gn),(︂∫︁
Rn

|f |q d𝜇
)︂1/q

≤ C‖f‖W 1,p(Gn).
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4. Capacitary-isoperimeter and -Poincaré
inequalities
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Gaussian Minkowski content
For every Borel set A ⊂ Rn, define the Gaussian Minkowski content of

its boundary 𝜕A as

𝒪n−1(𝜕A) := lim inf
r→0

V𝛾(Ar )− V𝛾(A)
r

,

with Ar := {x ∈ Rn : dist (x ,A) ≤ r}.

* If the Borel set A ⊂ Rn has smooth boundary 𝜕A, then

𝒪n−1(𝜕A) =
∫︁
𝜕A

𝛾(x)dℋn−1(x).

* The Cheeger isoperimetric inequality on Gn: for any Borel set A ⊂ Rn

with smooth boundary 𝜕A,

𝒪n−1(𝜕A)
V𝛾(A)V𝛾(Rn ∖ A)

≥ 2

√︂
2
𝜋
.

[L96] M. Ledoux, Lecture Notes in Math. 1648, Springer, Berlin, 1996, 165-264.
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Theorem 3
If K ⊂ Rn is compact, then

Cap1(K ; Gn) = inf {𝒪n−1(𝜕O) + V𝛾(O) :

open O ⊃ K with compact O and smooth 𝜕O
}︁
.

∙ Tool: Coarea formula for the Gaussian space [L96]:

For a smooth function f on Rn,∫︁
Rn

|∇f |dV𝛾 =

∫︁ ∞

0

(︃∫︁
{x∈Rn: |f (x)|=s}

𝛾(x)dℋn−1(x)

)︃
ds,

where dℋn−1 is the Hausdorff measure of dimension n − 1 on the

surface {x ∈ Rn : |f (x)| = s}.
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Theorem 4
The following three statements are equivalent:

(i) (Cheeger isoperimetric inequality) For any open set O ⊂ Rn with

smooth boundary,

𝒪n−1(𝜕O) ≥ 2

√︂
2
𝜋

V𝛾(O)V𝛾(Rn ∖ O).

(ii) For any smooth function f ,∫︁
Rn

|∇f |dV𝛾 ≥ 2
√︁

2
𝜋

∫︀∞
−∞ V𝛾({x ∈ Rn : f (x) > s})

×V𝛾({x ∈ Rn : f (x) ≤ s})ds.

(iii) (Gaussian 1-Poincaré/Sobolev inequality) For any smooth function

f with
∫︀
Rn f dV𝛾 = 0,∫︁

Rn
|∇f |dV𝛾 ≥

√︂
2
𝜋

∫︁
Rn

|f |dV𝛾 .
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∙ Key tool:

* Doubling case

— The boxing inequality (unknown for the Gaussian setting);

* Gaussian case

— Capacities CapBV of functions of bounded variations;

— Equivalence Cap1 ∼ CapBV
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Thank you for your attention!
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