Problem & Algorithms	Optimal order	Optimal weights	End
00000000	000000	0000	

Monte Carlo methods for numerical integration

Mario Ullrich

Johannes Kepler University Linz

NPFSA Bedlewo, September 2017

Problem & Algorithms •00000000	Optimal order	Optimal weights 0000	End
The Problem			

Let F_d be a class of *d*-variate functions $f:[0,1]^d \to \mathbb{R}$.

For $f \in F_d$ let

$$S(f) := \int_{[0,1]^d} f(y) \,\mathrm{d} y$$

 $\rightsquigarrow S: F_d \rightarrow \mathbb{R}$ is called the *solution operator*.

The goal is to compute an approximation of S(f) for $f \in F_d$ using only some *information* of the input f; here function evaluations.

Problem & Algorithms	Optimal order	Optimal weights	End
Sobolev spaces			

For $1 \le p \le \infty$ and $s \in \mathbb{N}$, we define the Sobolev classes of (dominating) mixed smoothness

$$\mathbf{W}_{p}^{s} = \left\{ f \in L_{p}([0,1]^{d}) : \|f\|_{\mathbf{W}_{p}^{s}} \leq 1 \right\},\$$

where

$$\|f\|_{\mathbf{W}^{s}_{p}} := \left(\sum_{\alpha \in \mathbb{N}^{d}_{0}: \ |\alpha|_{\infty} \leq s} \|D^{\alpha}f\|_{p}^{p}\right)^{1/p}$$

For simplicity we sometimes consider $\mathring{\mathbf{W}}_{p}^{s} = \{f \in \mathbf{W}_{p}^{s} : \operatorname{supp}(f) \subset (0,1)^{d}\}.$

Problem & Algorithms	Optimal order	Optimal weights	End
Sobolev spaces			

For practical applications other classes are often more suitable!

E.g. numerical simulations show an order of convergence n^{-2} for integration of f(x) = |x - 1/2| (d = 1). This can be explained by

$$f \in B^2_{1,\infty} \hookrightarrow E_2 := \{f \colon k^2 \hat{f}(k) < \infty\}.$$

Problem & Algorithms	Optimal order	Optimal weights	End
Deterministic algorit	hms		

The general form of a **deterministic** algorithm:

$$A_n(f) = \varphi_n(f(x_1), \ldots, f(x_n))$$

with a (nonlinear) mapping $\varphi_n : \mathbb{R}^n \to \mathbb{R}$ and (adaptively chosen) sample points x_i .

We want to bound

$$e(A_n, F_d) = \sup_{f \in F_d} |S(f) - A_n(f)|$$

or even

$$e_n(F_d) = \inf_{A_n} e(A_n, F_d).$$

(S is linear)

If F_d is symmetric and convex, then we may restrict ourselves to linear, non-adaptive algorithms (cubature rules) of the form

$$Q_n(f) = \sum_{x \in \mathcal{P}_n} a_x f(x),$$

where $(a_x)_{x \in \mathcal{P}_n} \subset \mathbb{R}$ and $\mathcal{P}_n \subset [0,1]^d$ with $\#\mathcal{P}_n = n$.

(If $a_x = 1/n$, we say Q_n is a quasi-Monte Carlo (QMC) algorithm.)

For a (possibly) random point set U_n , let

$$M_n(f) := \sum_{x \in \mathcal{U}_n} c_x f(x)$$

with (possibly) random weights $c_x = c_x(\mathcal{U}_n)$.

Define

$$e^{\operatorname{ran}}(M_n, F_d) = \sup_{f \in F_d} \sqrt{\mathbb{E}|S(f) - M_n(f)|^2}$$

and analogously $e_n^{ran}(F_d)$.

Problem & Algorithms	Optimal order	Optimal weights	End
Randomized algorith	ims		

The use of randomized algorithms in applications has many advantages (and a few disadvantages), e.g.,

$$e_n^{\mathrm{ran}}(F_d) \leq \frac{2}{\sqrt{n}}$$

as long as $F_d \subset \{f \in L_2([0,1]^d) \colon \|f\|_2 \le 1\}$. This is achieved by the classical Monte Carlo method.

Moreover,

$$e_n^{\mathrm{ran}}(F_d) \leq e_n(F_d)$$

since every deterministic algorithm is also a random algorithm.

Problem & Algorithms	Optimal order	Optimal weights	End
Randomized algorith	ims		

Hence, we know that there exist randomized algorithms that

- provide dimension independent error bounds
- have higher order convergence for smooth functions

Problem & Algorithms ○○○○○○●○	Optimal order	Optimal weights	End
Randomized algorith	ms		

Hence, we know that there exist randomized algorithms that

- provide dimension independent error bounds
- have higher order convergence for smooth functions

Is there an algorithm M_n that achieves both?

One could ask, e.g., for an M_n with

$$e_n^{\operatorname{ran}}(M_n,F_d) \leq 100 \cdot \min\left\{n^{-1/2},e_n(F_d)\right\}.$$

Problem & Algorithms ○○○○○○○●	Optimal order	Optimal weights	End
Δ •			

Instead of considering this question, I have...

AIM

- proven the optimal order for random methods for W^s_p (with an algorithm that is useless in high dimension).
- considered a promising algorithm for very high dimensions (that is certainly not optimal).

Deterministic algorithms: General lattice rules

Let T be an invertible $d \times d$ -matrix with det(T) = 1 and let

$$\mathbb{X} \ := \ \mathcal{T}(\mathbb{Z}^d) \qquad ext{and} \qquad \mathcal{L}_n \ := \ c_n^{1/d} \mathbb{X} \cap [0,1]^d$$

with $n \in \mathbb{N}$ and $c_n > 0$ such that $\#\mathcal{L}_n = n$. Clearly, $c_n \asymp 1/n$.

The cubature rule is then defined by

$$Q_n(f) = c_n \sum_{x \in \mathcal{L}_n} f(x).$$

Frolov's construction	from 1076		
Problem & Algorithms	Optimal order ○●○○○○○	Optimal weights	End

It remains to construct a "good" generator T for our cubature rule. For this define the (irreducible) polynomial

$$p_d(t) = \prod_{j=1}^d (t-2j+1)-1, \qquad t\in \mathbb{R},$$

and let $\xi_1,\ldots,\xi_d\in\mathbb{R}$ be its roots. Now, define the invertible matrix

$$T' = \begin{pmatrix} 1 & \xi_1 & \xi_1^2 & \cdots & \xi_1^{d-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \xi_d & \xi_d^2 & \cdots & \xi_d^{d-1} \end{pmatrix}$$

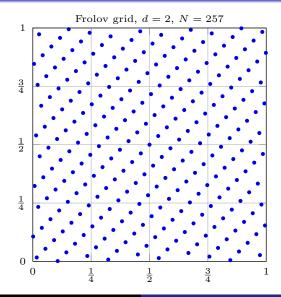
and let $T := T' / \det(T')$. Infact, every T with

$$\inf_{m\in\mathbb{Z}^d\setminus\{0\}}\prod_{j=1}^d(\mathit{Tm})_j>0$$
 would work.

Problem & Algorithms

Optimal order ○○●○○○○ Optimal weights

Frolov's construction from 1976



Mario Ullrich MC for numerical integration

Problem & Algorithms	Optimal order	Optimal weights	End
Results (optimal det	erministic order)		

Theorem [Frolov '76 / Skriganov '94 / Bykovski '85 / Temlyakov '90] Let Q_n be the Frolov cubature rule as defined above. Then, for each $1 and <math>s > \max\{1/2, 1/p\}$, we have

$$e(Q_n, \mathbf{\mathring{W}}_p^s) \asymp e_n(\mathbf{W}_p^s) \asymp n^{-s} (\log n)^{(d-1)/2}$$

There are numerous more known results in different settings of, e.g., Bakhvalov, Dubinin, Dũng, Frolov, Hinrichs, Korobov, Markhasin, Skriganov, Temlyakov, Triebel, T. Ullrich, myself...

 \sim Frolov's construction is **universal** for $\left\{ \mathring{\mathbf{W}}_{p}^{s} : s \geq 1, p \in (1, \infty) \right\}$.

(Large d? Implementation?)

Problem & Algorithms	Optimal order ○○○○●○○	Optimal weights	End
Monte Carlo			

We consider the randomized algorithm of Krieg & Novak

$$M_n(f) = c(n, U, V) \sum_{x \in \mathcal{P}_{n, U, V}} f(x)$$

$${\mathcal P}_{n,U,V} \, := \, c^{1/d} \, U \, T({\mathbb Z}^d + V) \cap [0,1]^d$$

with c = c(n, U, V) such that $\#\mathcal{P}_{n,U,V} = n$. Here, $V \sim \mathcal{U}[0, 1]^d$ and $U = \text{diag}(u_1, \dots, u_d)$ with $u_i \sim \mathcal{U}[1, 2]$.

Problem & Algorithms	Optimal order ○○○○○●○	Optimal weights	End

Monte Carlo

Theorem (MU '17)

Let M_n be the randomized Frolov cubature rule as defined above. Then, for each $s\in\mathbb{N},\,1\leq p\leq\infty$, we have

$$e^{\mathrm{ran}}(M_n, \mathring{\mathbf{W}}_p^s) \ arproptom \ e_n^{\mathrm{ran}}(\mathbf{W}_p^s) \ arproptom \ n^{-s-1/2+\sigma_p}$$

with $\sigma_p := \min\{0, 1/2 - 1/p\}.$

- universal for $\left\{ \check{\mathbf{W}}_{p}^{s}: s \in \mathbb{N}, \ p \in [1,\infty] \right\}$
- The constant in front is $\sim d^d$ (Geometry of numbers)

(Implementation?)

Problem & Algorithms	Optimal order ○○○○○○●	Optimal weights	End
	· · · ·		

Online archive for point sets

In collaboration with C. Kacwin, J. Oettershagen and T. Ullrich we're designing the homepage

http://wissrech.ins.uni-bonn.de/research/software/frolov/

where one can download the point sets (presently for $d \le 10$, $n \le 2^{20}$) together with programs to use them.

Problem & Algorithms	Optimal order	Optimal weights ●○○○	End
Optimally weighted WORK IN PROGRESS	МС		

As discussed above, the random method based on Frolov's cubature is hard (or impossible) to implement in very high dimension.

Instead, we use i.i.d. random points and assign "optimal" weights.

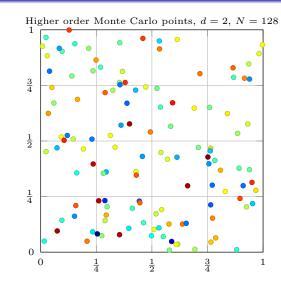
For such a random set U_n , we arrange the weights $c_x = c_x(U_n)$ in

$$M_n(f) := \sum_{x \in \mathcal{U}_n} c_x f(x)$$

such that certain (basis) functions are integrated exactly.

Problem & Algorithms	Optimal order	Optimal weights ○●○○	End
Optimally weighted	MC		

WORK IN PROGRESS



Mario Ullrich MC for numerical integration

Problem & Algorithms	Optimal order	Optimal weights ○○●○	End
Optimally weighted	MC		

Together with A. Hinrichs and J. Oettershagen, we proved

Theorem

Let M_n be defined as above. Then, for each $s \in \mathbb{N}$, we have

$$e(M_n, \mathbf{\mathring{W}}_2^s) \lesssim n^{-s}(\log n)^{c(s,d)}$$

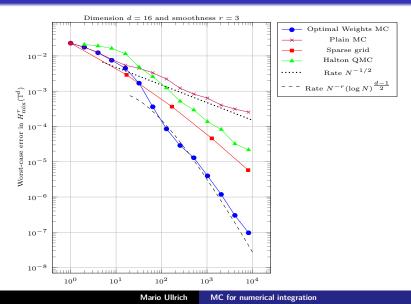
with probability $\geq 1 - n^{-K}$ for all K > 0.

(based on ideas of Cohen/Davenport/Leviatan '13)

Problem & Algorithms

Optimal order

Optimal weights ○○○● End



00000000	000000	0000		
Online englise for a sint sets				

Online archive for point sets

In collaboration with C. Kacwin, J. Oettershagen and T. Ullrich we're designing the homepage

http://wissrech.ins.uni-bonn.de/research/software/frolov/

where one can download the point sets (presently for $d \le 10$, $n \le 2^{20}$) together with programs to use them.

Thank you!