Optimal approximation of smooth functions on high-dimensional domains

Thomas Kühn

Universität Leipzig, Germany

NPFS 2017, Będlewo, 17–23 September 2017
22 September 2017
The talk is based on results from the following papers:

High-dimensional approximation

- High-dimensional problems appear in many applications
- Quantum chemistry:
 \(N \)-particle systems modelled in Besov-type spaces
 \(\leadsto \) approximation problem in dimension \(d = 3N \), with huge \(N \)
- Financial mathematics:
 Stochastic PDEs, require measurements every day
 \(\leadsto \) integration problem in dimension \(d = 365n \) (\(n \) years)
- Often: Dimension not clear a priori (more particles, longer period)
- In this talk: Approximation numbers of embeddings of function spaces on high-dimensional domains
- Special emphasis:
 Dependence of the hidden constants on the dimension
Approximation numbers

- **Approximation numbers** (also called linear widths) of a (bounded linear operator) $T : X \to Y$ between Banach spaces

 $$a_n(T : X \to Y) := \inf \{\|T - A\| : \text{rank } A < n\}$$

- **Many applications**

 Functional Analysis, Approximation Theory, Numerical Analysis,…

- **Useful properties**, in particular

 1. **Additivity**
 $$a_{n+k-1}(S + T) \leq a_n(S) + a_k(T)$$

 2. **Multiplicativity**
 $$a_{n+k-1}(S \circ T) \leq a_n(S) \cdot a_k(T)$$

 3. **Rank property**
 $$\text{rank } T < n \implies a_n(T) = 0$$
Interpretation in terms of algorithms

- Every operator $A : X \to Y$ of finite rank n can be written as

$$Ax = \sum_{j=1}^{n} L_j(x) y_j \quad \text{for all } x \in X$$

with linear functionals $L_j \in X^*$ and vectors $y_j \in Y$.

- A is a linear algorithm using arbitrary linear information.

- worst-case error of the algorithm A

$$\text{err}^{\text{wor}}(A) := \sup_{\|x\| \leq 1} \|Tx - Ax\| = \|T - A\|$$

- n-th minimal worst-case error of the approximation problem for T (w.r.t. linear algorithms and arbitrary linear information)

$$\text{err}_{n}^{\text{wor}}(T) := \inf_{\text{rank } A \leq n} \text{err}^{\text{wor}}(A) = a_{n+1}(T)$$
Hilbert space setting

- Let $T : H \to F$ be a compact linear operator between Hilbert spaces.

- **Singular numbers** (= singular values, known from SVD)
 \[s_n(T) := \sqrt{\lambda_n(T^*T)} \]

- **Schmidt representation.** \(\exists \) ONS \((e_k) \subset H\) and \((f_k) \subset F\) s.t.
 \[Tx = \sum_{k=1}^{\infty} s_k(T) \langle x, e_k \rangle f_k \quad \text{for all } x \in H. \]

- **Approximation numbers** = singular numbers
 \[a_n(T) = \inf_{\text{rank } A < n} \| T - A \| = \| T - A_n \| = s_n(T) \]
Best approximations - optimal algorithms

- **Truncated Schmidt representation** of $T : H \to F$

 $$A_n x := \sum_{k=1}^{n} s_k(T) \langle x, e_k \rangle f_k \quad \Leftrightarrow \quad \text{err}_{n}^{\text{wor}}(T) = a_{n+1}(T) = \| T - A_n \|.$$

- **Input.** Linear information on an element of $x \in H$, n Fourier coefficients of x w.r.t the ONS (e_k)

- **Output.** $A_n x$ = best approximation of Tx, realizing the n-th minimal worst-case error, measured in the norm of the target space F.

- **Note:** The best approximation is given by the concrete algorithm A_n.
An example - Sobolev embeddings

- **Well-known** for Sobolev spaces of dominating mixed smoothness
 \[
 c_{s,d} \cdot \left[\frac{(\log n)^{d-1}}{n}\right]^s \leq \alpha_n(l_d : H_{mix}^s(\mathbb{T}^d) \rightarrow L_2(\mathbb{T}^d)) \leq C_{s,d} \cdot \left[\frac{(\log n)^{d-1}}{n}\right]^s
 \]

- **Almost nothing known:**
 How do the constants $c_{s,d}$ and $C_{s,d}$ depend on s and d?
 This is essential for high-dimensional numerical problems, and also for tractability questions in information-based complexity!

- **Clearly,** the constants heavily depend on the chosen norms.
 First we have to fix (somehow natural) norms.
 For all our norms, we will have norm one embeddings into $L_2(\mathbb{T}^d)$.
Asymptotics vs. preasymptotics

- To "see" the asymptotic rate

\[\varphi(n) := \left[\frac{(\log n)^{d-1}}{n} \right]^s \]

in high dimensions, one has to wait super-exponentially long.

- (Dimension \(d + 1\)): \(\varphi\) is increasing on \([1, e^d]\)

\[\varphi(e^d) = \left(\frac{d}{e} \right)^{sd}, \quad \varphi(d^d) = (\log d)^{sd} \gg 1. \]

Since \(a_n \leq 1\) for all \(n\), the asymptotic rate \(\varphi(n)\) is useless for \(n \leq d^d\). But \(d^d\) is much too large for practical purposes, even for moderate \(d\).

- We need – information on the constants (\(d\)-dependence)
- preasymptotic estimates (for small \(n\), say \(n \leq 2^d\))
General periodic spaces

- **Fourier coefficients** of \(f \in L_2(\mathbb{T}^d) \),
 \[
 c_k(f) := \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x) e^{-ikx} \, dx, \quad k \in \mathbb{Z}^d
 \]

- **Given weights** \(w(k) \geq 1, k \in \mathbb{Z}^d \), let
 \(F_d(w) \) be the space of all \(f \in L_2(\mathbb{T}^d) \) such that
 \[
 \| f \|_{F_d(w)} := \left(\sum_{k \in \mathbb{Z}^d} w(k)^2 |c_k(f)|^2 \right)^{1/2} < \infty.
 \]

- **We have compact embeddings**
 \[
 F_d(w) \hookrightarrow L_2(\mathbb{T}^d) \iff \lim_{|k| \to \infty} \frac{1}{w(k)} = 0
 \]
 \[
 F_d(w) \hookrightarrow L_\infty(\mathbb{T}^d) \iff \sum_{k \in \mathbb{Z}^d} \frac{1}{w(k)^2} < \infty.
 \]
Isotropic Sobolev spaces

Let $s > 0$, $d \in \mathbb{N}$, $0 < p < \infty$ and

$$w_{s,p}(k) := \left(1 + \sum_{j=1}^{d} |k_j|^p\right)^{s/p}.$$

$H^{s,p}(\mathbb{T}^d)$ consists of all $f \in L_2(\mathbb{T}^d)$ such that

$$\|f|_{H^{s,p}(\mathbb{T}^d)}\| := \left(\sum_{k \in \mathbb{Z}^d} w_{s,p}(k)^2|c_k(f)|^2\right)^{1/2} < \infty.$$

For fixed $s > 0$ and $d \in \mathbb{N}$, all these norms are equivalent, with equivalence constants depending on d. Therefore, all $H^{s,p}(\mathbb{T}^d)$, $0 < p < \infty$, coincide as vector spaces.

The fine parameter p is motivated by comparison with classical norms. It also shows the very subtle dependence of approximation numbers on the chosen norms!
Comparison with classical norms

- **Isotropic Sobolev spaces** $H^m(\mathbb{T}^d)$ with **integer smoothness** $m \in \mathbb{N}$

- **Classical norm** (all partial derivatives)

 \[
 \| f \|_{H^m(\mathbb{T}^d)} := \left(\sum_{|\alpha| \leq m} \| D^\alpha f \|_{L^2(\mathbb{T}^d)}^2 \right)^{1/2} \sim \| f \|_{H^{m,2}(\mathbb{T}^d)}
 \]

 with equivalence constants independent on d.

- **Modified classical norm** (only highest derivatives in each coordinate)

 \[
 \left(\| f \|_{L^2(\mathbb{T}^d)}^2 + \sum_{j=1}^d \| \frac{\partial^m f}{\partial x_j^m} \|_{L^2(\mathbb{T}^d)}^2 \right)^{1/2} = \| f \|_{H^{m,m}(\mathbb{T}^d)}
 \]
Let $s > 0$, $d \in \mathbb{N}$, $0 < p < \infty$ and

$$w_{s,p}^{\text{mix}}(k) := \prod_{j=1}^{d} \left(1 + |k_j|^p\right)^{s/p}.$$

$H_{\text{mix}}^{s,p}(\mathbb{T}^d)$ consists of all $f \in L_2(\mathbb{T}^d)$ such that

$$\|f|H_{\text{mix}}^{s,p}(\mathbb{T}^d)\| := \left(\sum_{k \in \mathbb{Z}^d} w_{s,p}^{\text{mix}}(k)^2 |c_k(f)|^2\right)^{1/2} < \infty,$$

For fixed $s > 0$ and $d \in \mathbb{N}$, all these norms are equivalent, hence all the spaces $H_{\text{mix}}^{s,p}(\mathbb{T}^d)$, $0 < p < \infty$, coincide as vector spaces.
Reduction to sequence spaces

Commutative diagram

\[F_d(w) \xrightarrow{I_d} L_2(\mathbb{T}^d) \]
\[\downarrow \quad A \quad \downarrow B \]
\[\ell_2(\mathbb{Z}^d) \xrightarrow{D} \ell_2(\mathbb{Z}^d) \]

\[Af := (w(k) c_k(f))_{k \in \mathbb{Z}^d}, \quad B\xi := \sum_{k \in \mathbb{Z}^d} \xi_k e^{ikx}, \quad D(\xi_k) := (\xi_k/w(k)) \]

A and B are unitary operators

\[a_n(I_d) = a_n(D) = s_n(D) = \sigma_n \]

where \((\sigma_n)_{n \in \mathbb{N}}\) is the non-increasing rearrangement of \((1/w(k))_{k \in \mathbb{Z}^d}\).
Combinatorics, isotropic case

- The weight "sequence" \((w_{s,p}(k))_{k \in \mathbb{Z}^d}\) is piecewise constant, it attains all values \((1 + r^p)^{s/p}\), each of them many times, e.g. for \(k = \pm re_j, j = 1, \ldots, d\).

- Let

\[
N(r, d) := \text{card}\{ k \in \mathbb{Z}^d : \sum_{j=1}^d |k_j|^p \leq r^p \}, \ r \in \mathbb{N}.
\]

Lemma

If \(N(r - 1, d) < n \leq N(r, d)\), then

\[
a_n(I_d : H^{s,p}(\mathbb{T}^d) \rightarrow L_2(\mathbb{T}^d)) = (1 + r^p)^{-s/p}.
\]

- In principle, this gives \(a_n(I_d)\) for all \(n\). But, unless \(p = 1\), the exact computation of the cardinalities \(N(r, d)\) is impossible. The hard work is to find good estimates, using e.g. volume or entropy arguments.
Asymptotic constants

- Let B^d_p denote the unit ball in $(\mathbb{R}^d, \|\cdot\|_p)$.

Theorem (KSU 2014 and KSU 2015)

Let $0 < s, p < \infty$ and $d \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \frac{n^{s/d}}{a_n(l_d : H^{s,p}_d(\mathbb{T}^d) \to L^2(\mathbb{T}^d))} = \ vol(B^d_p)^{s/d} \sim d^{-s/p}$$

and

$$\lim_{n \to \infty} \left[\frac{n}{(\log n)^{d-1}} \right]^s a_n(l_d : H^{s,p}_{\text{mix}}(\mathbb{T}^d) \to L^2(\mathbb{T}^d)) = \left[\frac{2^d}{(d-1)!} \right]^s$$
Some comments

- Isotropic case: The asymptotic constant is of order
 \[d^{-s/2} \] for the natural norm \((p = 2) \),
 \[d^{-1/2} \] for the modified natural norm \((p = 2s) \).

 This gives the correct order \(n^{-s/d} \) of \(a_n \) as \(n \to \infty \) and the
 exact decay rate \(d^{-s/p} \) of the constants as \(d \to \infty \).

- Mixed case: It is interesting that the limit is independent on \(p \).

- The constants decay
 - polynomially in the isotropic case, and even
 - super-exponentially in the mixed case, roughly like \(\left(\frac{2e}{d} \right)^{sd} \).

 This helps in error estimates!
Estimates for large n

Next step: Estimates of a_n for "large" n.

Theorem (KSU 2014, isotropic case, $p = 1$)

Let $s > 0$ and $n \geq 6^d/3$. Then

$$d^{-s} n^{-s/d} \leq a_n(I_d : H^{s,1} (\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq (4e)^s d^{-s} n^{-s/d}.$$

- Remember: The asymptotic constant is of order d^{-s} as $d \to \infty$. This d-dependence d^{-s} is reflected in the above estimates!

- Proof: via combinatorial estimates of the cardinalities $N(r,d)$

- We have similar estimates for all other $0 < p < \infty$, and also in the mixed case $I_d : H^{s,p}_{\text{mix}} (\mathbb{T}^d) \to L_2(\mathbb{T}^d)$
Preasymptotic estimates – isotropic case

Theorem (KSU 2014)

Let $s > 0$, $p = 1$ and $2 \leq n \leq 2^d$. Then

$$
\left(\frac{1}{2 + \log_2 n} \right)^s \leq a_n(I_d: H^{s,1}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq \left(\frac{\log_2(1 + 2d)}{\log_2 n} \right)^s.
$$

Proof by combinatorial arguments, which only work for $p = 1$. Using a relation to entropy numbers, we could close the gap between lower and upper bounds and treat arbitrary p’s.

Theorem (KMU 2015)

Let $0 < s$, $p < \infty$ and $2 \leq n \leq 2^d$. Then

$$
a_n(I_d: H^{s,p}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \sim_{s,p} \left(\frac{\log_2(1 + d/\log_2 n)}{\log_2 n} \right)^{s/p}.
$$
Preasymptotic estimates – mixed case

Theorem (KSU 2015)

Let $s > 0$, $d \geq 2$ and $8 \leq n \leq d \cdot 2^{2d-1}$. Then

$$a_n(I_d : H^{s,1}_{mix}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq \left(\frac{e^2}{n} \right)^{\frac{s}{2+\log_2 d}}.$$

- The bound is non-trivial (i.e. < 1) for all n in the given range, since $\frac{e^2}{n} \leq \frac{e^2}{8} = 0.9236... < 1$.

- We have similar lower estimates. They are not matching but they show, that one has to wait exponentially long until one can "see" the correct asymptotic rate n^{-s}, ignoring the log-terms.
Gevrey classes

- Introduced already in 1918, since then many applications in PDEs.

Definition (Maurice Gevrey, 1918)

Let \(\sigma > 1 \). A function \(f \in C^\infty(\mathbb{R}^d) \) belongs to the Gevrey class \(G^\sigma(\mathbb{R}^d) \), if for every compact subset \(K \subset \mathbb{R}^d \) there are constants \(C = C(K) > 0 \) and \(R = R(K) > 0 \) such that for all multi-indices \(\alpha \in \mathbb{N}_0^d \)

\[
\sup_{x \in K} |D^\alpha f(x)| \leq C \cdot R^{\alpha_1 + \cdots + \alpha_d} \cdot (\alpha_1! \cdots \alpha_d!)^\sigma.
\]

- The Gevrey classes \(G^\sigma(\mathbb{R}^d) \) are linear spaces, but not normed spaces.
- \(\sigma = 1 \): All functions in \(G^\sigma(\mathbb{R}^d) \) are analytic.
- \(\sigma > 1 \): \(G^\sigma(\mathbb{R}^d) \) contains non-analytic functions.
- For periodic \(f : \mathbb{R}^d \to \mathbb{C} \), the growth conditions on the derivatives can be rephrased in terms of Fourier coefficients.
Periodic Gevrey spaces

Definition

Let $0 < s < 1$ and $c > 0$. The periodic Gevrey space $G^{s,c}(\mathbb{T}^d)$ consists of all C^∞-functions $f : \mathbb{T}^d \rightarrow \mathbb{C}$ such that

$$
\| f \|_{G^{s,c}(\mathbb{T}^d)} := \left(\sum_{k \in \mathbb{Z}^d} \exp(c \| k \|^s_1) |c_k(f)|^2 \right)^{1/2} < \infty.
$$

- For periodic f: $f \in G^\sigma(\mathbb{R}^d) \iff \exists c > 0 : f \in G^{1/\sigma,c}(\mathbb{T}^d)$.

Theorem (KP2015)

Let $0 < s < 1$, $c > 0$ and $d \in \mathbb{N}$. Then

$$
\lim_{n \rightarrow \infty} \frac{a_n(l_d : G^{s,c}(\mathbb{T}^d) \rightarrow L_2(\mathbb{T}^d)) \exp \left(- 2^{-s} c \left(d! n \right)^{s/d} \right)}{1} = 1
$$

- We also have preasymptotic estimates, as well as estimates for large n.
From L_2-approximation to L_∞-approximation

- Recall: $F_d(w) \hookrightarrow L_\infty(\mathbb{T}^d) \iff \sum_{k \in \mathbb{Z}^d} 1/w(k)^2 < \infty$

In this case:

Theorem (CKS2016)

$$a_n(l_d : F_d(w) \to L_\infty(\mathbb{T}^d)) = \left(\sum_{j=n}^{\infty} a_j(l_d : F_d(w) \to L_2(\mathbb{T}^d))^2\right)^{1/2}.$$

- This can be applied to Sobolev and Gevrey embeddings

 $H^{s,p}(\mathbb{T}^d) \hookrightarrow L_\infty(\mathbb{T}^d) \iff s > d/2$

 $H^{s,p}_{\text{mix}}(\mathbb{T}^d) \hookrightarrow L_\infty(\mathbb{T}^d) \iff s > 1/2$

 $G^{s,c}(\mathbb{T}^d) \hookrightarrow L_\infty(\mathbb{T}^d) \quad \forall 0 < s < 1, c > 0$

 We get optimal asymptotic constants for these embeddings.

- **Open problem:** Preasymptotics for Sobolev embeddings?
Consider the approximation problem

\[l_d : F_d(\mathbb{T}^d) \to L_2(\mathbb{T}^d), \quad d \in \mathbb{N}. \]

Optimal worst case error of linear algorithms (using \(n \) pieces of arbitrary linear information)

\[\text{err}_{n}^{\text{wor}}(l_d) = a_{n+1}(l_d) \]

Information complexity

\[n(\varepsilon, d) := \min\{ n \in \mathbb{N} : a_{n+1}(l_d) \leq \varepsilon \} \]

What is the behaviour of \(n(\varepsilon, d) \) as \(d \to \infty \) and/or \(\varepsilon \to 0 \)?

Tractability notions in IBC classify this behaviour
Tractability notions

- polynomial
 \[n(\varepsilon, d) \leq C \varepsilon^{-p} d^q \]

- quasi-polynomial
 \[\ln n(\varepsilon, d) \leq C (1 + \ln \frac{1}{\varepsilon})(1 + \ln d) \]

- uniformly weakly tractable
 \[\lim_{1/\varepsilon+d \to \infty} \frac{\ln n(\varepsilon,d)}{(1/\varepsilon+d)^q} = 0 \quad \text{for all } q > 0 \]

- weakly tractable
 \[\lim_{1/\varepsilon+d \to \infty} \frac{\ln n(\varepsilon,d)}{1/\varepsilon+d} = 0 \]

- intractable = not weakly tractable

- curse of dimension
 \[n(\varepsilon_0, d) \geq C^d \]
 for some \(\varepsilon_0 > 0 \) and \(C > 1 \)
 and infinitely many \(d \in \mathbb{N} \)
Tractability of our approximation problems

Our estimates can be translated into tractability results.

Theorem

None of the approximation problems $I_d : F_d(\mathbb{T}^d) \to L_2(\mathbb{T}^d)$, $d \in \mathbb{N}$, with

$$F_d(\mathbb{T}^d) = H^{s,p}(\mathbb{T}^d) \text{ or } H_{mix}^{s,p}(\mathbb{T}^d) \text{ or } G^{s,c}(\mathbb{T}^d)$$

suffers from the curse of dimensionality.

Theorem (isotropic Sobolev spaces)

Let $0 < s, p < \infty$. The approximation problem

$$I_d : H^{s,p}(\mathbb{T}^d) \to L_2(\mathbb{T}^d), \quad d \in \mathbb{N},$$

is weakly tractable, if $s > p$, and intractable, if $s \leq p$.
Theorem (mixed Sobolev spaces)

For all $0 < s, p < \infty$ the approximation problem

$$I_d : H^{s,p}_{\text{mix}}(\mathbb{T}^d) \to L_2(\mathbb{T}^d), \quad d \in \mathbb{N},$$

is quasi-polynomially tractable, but not polynomially tractable.

Theorem (Gevrey spaces)

For all $0 < s < 1$ and $c > 0$ the approximation problem

$$I_d : G^{s,c}(\mathbb{T}^d) \to L_2(\mathbb{T}^d), \quad d \in \mathbb{N},$$

is uniformly weakly tractable, but not quasi-polynomially tractable.
Final remarks

An interesting observation

- Gevrey spaces consist of C^∞-functions and are much smaller than the mixed spaces, which are only of finite smoothness.
- The decay rate of the approximation numbers a_n as $n \to \infty$ is
 - subexponential for Gevrey embeddings
 - polynomial for mixed-space embeddings
- But the tractability of the mixed-space embeddings is better. This is due to the preasymptotic behaviour.

Thank you for your attention!