Optimal approximation of smooth functions on high-dimensional domains

Thomas Kühn
Universität Leipzig, Germany

NPFSA 2017, Będlewo, 17-23 September 2017
22 September 2017

The talk is based on results from the following papers:

- T. Kühn, W. Sickel and T. Ullrich, Approximation numbers of Sobolev embeddings - Sharp constants and tractability, J. Complexity 30 (2014), 95-116.
- T. Kühn, W. Sickel and T. Ullrich, Approximation of mixed order Sobolev functions on the d-torus - Asymptotics, preasymptotics and d-dependence, Constr. Approx. 42 (2015), 353-398.
- F. Cobos, T. Kühn and W. Sickel, Optimal approximation of multivariate periodic Sobolev functions in the sup-norm, J. Funct. Anal. 270 (2016), 4196-4112.
- T. Kühn, S. Mayer and T. Ullrich, Counting via entropy: New preasymptotics for the approximation numbers of Sobolev embeddings, SIAM J. Numer. Anal. 54 (2016), 3625-3647.
- T. Kühn and M. Petersen, Approximation in periodic Gevrey spaces, work in progress.

High-dimensional approximation

- High-dimensional problems appear in many applications
- Quantum chemistry: N-particle systems modelled in Besov-type spaces \curvearrowright approximation problem in dimension $d=3 N$, with huge N
- Financial mathematics: Stochastic PDEs, require measurements every day \curvearrowright integration problem in dimension $d=365 n$ (n years)
- Often: Dimension not clear a priori (more particles, longer period)
- In this talk: Approximation numbers of embeddings of function spaces on high-dimensional domains
- Special emphasis:

Dependence of the hidden constants on the dimension

Approximation numbers

- Approximation numbers (also called linear widths) of a (bounded linear operator) $T: X \rightarrow Y$ between Banach spaces

$$
a_{n}(T: X \rightarrow Y):=\inf \{\|T-A\|: \operatorname{rank} A<n\}
$$

- Many applications

Functional Analysis, Approximation Theory, Numerical Analysis,...

- Useful properties, in particular
(1) Additivity $a_{n+k-1}(S+T) \leq a_{n}(S)+a_{k}(T)$
(2) Multiplicativity $a_{n+k-1}(S \circ T) \leq a_{n}(S) \cdot a_{k}(T)$
(3) Rank property $\operatorname{rank} T<n \Longrightarrow a_{n}(T)=0$

Interpretation in terms of algorithms

- Every operator $A: X \rightarrow Y$ of finite rank n can be written as

$$
A x=\sum_{j=1}^{n} L_{j}(x) y_{j} \quad \text { for all } x \in X
$$

with linear functionals $L_{j} \in X^{*}$ and vectors $y_{j} \in Y$.
$\curvearrowright \quad A$ is a linear algorithm using arbitrary linear information

- worst-case error of the algorithm A

$$
\operatorname{err}^{w o r}(A):=\sup _{\|x\| \leq 1}\|T x-A x\|=\|T-A\|
$$

- n-th minimal worst-case error of the approximation problem for T (w.r.t. linear algorithms and arbitrary linear information)

$$
\operatorname{err}_{n}^{\text {wor }}(T):=\inf _{\operatorname{rank} A \leq n} \operatorname{err}{ }^{\text {wor }}(A)=a_{n+1}(T)
$$

Hilbert space setting

- Let $T: H \rightarrow F$ be a compact linear operator between Hilbert spaces.
- Singular numbers (= singular values, known from SVD)

$$
s_{n}(T):=\sqrt{\lambda_{n}\left(T^{*} T\right)}
$$

- Schmidt representation. \exists ONS $\left(e_{k}\right) \subset H$ and $\left(f_{k}\right) \subset F$ s.t.

$$
T x=\sum_{k=1}^{\infty} s_{k}(T)\left\langle x, e_{k}\right\rangle f_{k} \quad \text { for all } x \in H
$$

- Approximation numbers $=$ singular numbers

$$
a_{n}(T)=\inf _{\operatorname{rank} A<n}\|T-A\|=\left\|T-A_{n}\right\|=s_{n}(T)
$$

Best approximations - optimal algorithms

- Truncated Schmidt representation of $T: H \rightarrow F$

$$
A_{n} x:=\sum_{k=1}^{n} s_{k}(T)\left\langle x, e_{k}\right\rangle f_{k} \quad \curvearrowright \quad \operatorname{err} n_{n}^{w o r}(T)=a_{n+1}(T)=\left\|T-A_{n}\right\|
$$

- Input. Linear information on an element of $x \in H$, n Fourier coefficients of x w.r.t the ONS $\left(e_{k}\right)$

Output. $A_{n} x=$ best approximation of $T x$, realizing the n-th minimal worst-case error, measured in the norm of the target space F.

- Note: The best approximation is given by the concrete algorithm A_{n}.

An example - Sobolev embeddings

- Well-known for Sobolev spaces of dominating mixed smoothness

$$
c_{s, d} \cdot\left[\frac{(\log n)^{d-1}}{n}\right]^{s} \leq a_{n}\left(I_{d}: H_{m i x}^{s}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right) \leq C_{s, d} \cdot\left[\frac{(\log n)^{d-1}}{n}\right]^{s}
$$

- Almost nothing known:

How do the constants $c_{s, d}$ and $C_{s, d}$ depend on s and d ?
This is essential for high-dimensional numerical problems, and also for tractability questions in information-based complexity!

- Clearly, the constants heavily depend on the chosen norms. \curvearrowright First we have to fix (somehow natural) norms. For all our norms, we will have norm one embeddings into $L_{2}\left(\mathbb{T}^{d}\right)$.

Asymptotics vs. preasymptotics

- To "see" the asymptotic rate

$$
\varphi(n):=\left[\frac{(\log n)^{d-1}}{n}\right]^{s}
$$

in high dimensions, one has to wait super-exponentially long.

- (Dimension $d+1$): φ is increasing on $\left[1, e^{d}\right]$

$$
\varphi\left(e^{d}\right)=\left(\frac{d}{e}\right)^{s d} \quad, \quad \varphi\left(d^{d}\right)=(\log d)^{s d} \gg 1
$$

Since $a_{n} \leq 1$ for all n, the asymptotic rate $\varphi(n)$ is useless for $n \leq d^{d}$. But d^{d} is much too large for practical purposes, even for moderate d.

- \curvearrowright We need - information on the constants (d-dependence)
- preasymptotic estimates (for small n, say $n \leq 2^{d}$)

General periodic spaces

- Fourier coefficients of $f \in L_{2}\left(\mathbb{T}^{d}\right)$,

$$
c_{k}(f):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(x) e^{-i k x} d x \quad, \quad k \in \mathbb{Z}^{d}
$$

- Given weights $w(k) \geq 1, k \in \mathbb{Z}^{d}$, let
$F_{d}(w)$ be the space of all $f \in L_{2}\left(\mathbb{T}^{d}\right)$ such that

$$
\left\|f \mid F_{d}(w)\right\|:=\left(\sum_{k \in \mathbb{Z}^{d}} w(k)^{2}\left|c_{k}(f)\right|^{2}\right)^{1 / 2}<\infty
$$

- We have compact embeddings

$$
\begin{aligned}
F_{d}(w) \hookrightarrow L_{2}\left(\mathbb{T}^{d}\right) & \Longleftrightarrow \quad \lim _{|k| \rightarrow \infty} 1 / w(k)=0 \\
F_{d}(w) \hookrightarrow L_{\infty}\left(\mathbb{T}^{d}\right) & \Longleftrightarrow \sum_{k \in \mathbb{Z}^{d}} 1 / w(k)^{2}<\infty
\end{aligned}
$$

Isotropic Sobolev spaces

- Let $s>0, d \in \mathbb{N}, 0<p<\infty$ and $\quad w_{s, p}(k):=\left(1+\sum_{j=1}^{d}\left|k_{j}\right|^{p}\right)^{s / p}$. $H^{s, p}\left(\mathbb{T}^{d}\right)$ consists of all $f \in L_{2}\left(\mathbb{T}^{d}\right)$ such that

$$
\left\|f \mid H^{s, p}\left(\mathbb{T}^{d}\right)\right\|:=\left(\sum_{k \in \mathbb{Z}^{d}} w_{s, p}(k)^{2}\left|c_{k}(f)\right|^{2}\right)^{1 / 2}<\infty
$$

- For fixed $s>0$ and $d \in \mathbb{N}$, all these norms are equivalent, with equivalence constants depending on d. Therefore, all $H^{s, p}\left(\mathbb{T}^{d}\right), 0<p<\infty$, coincide as vector spaces.
- The fine parameter p is motivated by comparison with classical norms. It also shows the very subtle dependence of approximation numbers on the chosen norms!

Comparison with classical norms

- Isotropic Sobolev spaces $H^{m}\left(\mathbb{T}^{d}\right)$ with integer smoothness $m \in \mathbb{N}$
- Classical norm (all partial derivatives)

$$
\left\|f\left|H^{m}\left(\mathbb{T}^{d}\right)\left\|:=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} f \mid L_{2}\left(\mathbb{T}^{d}\right)\right\|^{2}\right)^{1 / 2} \sim\right\| f\right| H^{m, 2}\left(\mathbb{T}^{d}\right)\right\|
$$

with equivalence constants independent on d.

- Modified classical norm (only highest derivatives in each coordinate)

$$
\left(\left\|f\left|L_{2}\left(\mathbb{T}^{d}\right)\left\|^{2}+\sum_{j=1}^{d}\right\| \frac{\partial^{m} f}{\partial x_{j}^{m}}\right| L_{2}\left(\mathbb{T}^{d}\right)\right\|^{2}\right)^{1 / 2}=\left\|f \mid H^{m, m}\left(\mathbb{T}^{d}\right)\right\|
$$

Sobolev spaces of dominating mixed smoothness

- Let $s>0, d \in \mathbb{N}, 0<p<\infty$ and $\quad w_{s, p}^{m i x}(k):=\prod_{j=1}^{d}\left(1+\left|k_{j}\right|^{p}\right)^{s / p}$. $H_{\text {mix }}^{s, p}\left(\mathbb{T}^{d}\right)$ consists of all $f \in L_{2}\left(\mathbb{T}^{d}\right)$ such that

$$
\left\|f \mid H_{m i x}^{s, p}\left(\mathbb{T}^{d}\right)\right\|:=\left(\sum_{k \in \mathbb{Z}^{d}} w_{s, p}^{m i x}(k)^{2}\left|c_{k}(f)\right|^{2}\right)^{1 / 2}<\infty
$$

- For fixed $s>0$ and $d \in \mathbb{N}$, all these norms are equivalent, hence all the spaces $H_{\text {mix }}^{s, p}\left(\mathbb{T}^{d}\right), 0<p<\infty$, coincide as vector spaces.

Reduction to sequence spaces

Commutative diagram

$A f:=\left(w(k) c_{k}(f)\right)_{k \in \mathbb{Z}^{d}} \quad, \quad B \xi:=\sum_{k \in \mathbb{Z}^{d}} \xi_{k} e^{i k x} \quad, \quad D\left(\xi_{k}\right):=\left(\xi_{k} / w(k)\right)$
A and B are unitary operators $\quad \curvearrowright \quad a_{n}\left(I_{d}\right)=a_{n}(D)=s_{n}(D)=\sigma_{n}$ where $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ is the non-increasing rearrangement of $(1 / w(k))_{k \in \mathbb{Z}^{d}}$.

Combinatorics, isotropic case

- The weight "sequence" $\left(w_{s, p}(k)\right)_{k \in \mathbb{Z}^{d}}$ is piecewise constant, it attains all values $\left(1+r^{p}\right)^{s / p}$, each of them many times, e.g. for $k= \pm r e_{j}, j=1, \ldots, d$.
- Let

$$
N(r, d):=\operatorname{card}\left\{k \in \mathbb{Z}^{d}: \sum_{j=1}^{d}\left|k_{j}\right|^{p} \leq r^{p}\right\}, r \in \mathbb{N} .
$$

Lemma

If $N(r-1, d)<n \leq N(r, d)$, then

$$
a_{n}\left(I_{d}: H^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right)=\left(1+r^{p}\right)^{-s / p}
$$

- In principle, this gives $a_{n}\left(I_{d}\right)$ for all n. But, unless $p=1$, the exact computation of the cardinalities $N(r, d)$ is impossible. The hard work is to find good estimates, using e.g. volume or entropy arguments.

Asymptotic constants

- Let B_{p}^{d} denote the unit ball in $\left(\mathbb{R}^{d},\|\cdot\|_{p}\right)$.

Theorem (KSU 2014 and KSU 2015)

Let $0<s, p<\infty$ and $d \in \mathbb{N}$. Then

$$
\lim _{n \rightarrow \infty} n^{s / d} a_{n}\left(I_{d}: H^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right)=\operatorname{vol}\left(B_{p}^{d}\right)^{s / d} \sim d^{-s / p}
$$

and

$$
\lim _{n \rightarrow \infty}\left[\frac{n}{(\log n)^{d-1}}\right]^{s} a_{n}\left(I_{d}: H_{m i x}^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right)=\left[\frac{2^{d}}{(d-1)!}\right]^{s}
$$

Some comments

- Isotropic case: The asymptotic constant is of order $d^{-s / 2}$ for the natural norm $(p=2)$, $d^{-1 / 2}$ for the modified natural norm $(p=2 s)$.
This gives the correct order $n^{-s / d}$ of a_{n} as $n \rightarrow \infty$ and the exact decay rate $d^{-s / p}$ of the constants as $d \rightarrow \infty$.
- Mixed case: It is interesting that the limit is independent on p.
- The constants decay
- polynomially in the isotropic case, and even
- super-exponentially in the mixed case, roughly like $\left(\frac{2 e}{d}\right)^{s d}$.

This helps in error estimates!

Estimates for large n

Next step: Estimates of a_{n} for "large" n.
Theorem (KSU 2014, isotropic case, $p=1$)
Let $s>0$ and $n \geq 6^{d} / 3$. Then

$$
d^{-s} n^{-s / d} \leq a_{n}\left(I_{d}: H^{s, 1}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right) \leq(4 e)^{s} d^{-s} n^{-s / d}
$$

- Remember: The asymptotic constant is of order d^{-s} as $d \rightarrow \infty$. This d-dependence d^{-s} is reflected in the above estimates!
- Proof: via combinatorial estimates of the cardinalities $N(r, d)$
- We have similar estimates for all other $0<p<\infty$, and also in the mixed case $I_{d}: H_{\text {mix }}^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)$

Preasymptotic estimates - isotropic case

Theorem (KSU 2014)

Let $s>0, p=1$ and $2 \leq n \leq 2^{d}$. Then

$$
\left(\frac{1}{2+\log _{2} n}\right)^{s} \leq a_{n}\left(I_{d}: H^{s, 1}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right) \leq\left(\frac{\log _{2}(1+2 d)}{\log _{2} n}\right)^{s} .
$$

- Proof by combinatorial arguments, which only work for $p=1$. Using a relation to entropy numbers, we could close the gap between lower and upper bounds and treat arbitrary p 's.

Theorem (KMU 2015)

Let $0<s, p<\infty$ and $2 \leq n \leq 2^{d}$. Then

$$
a_{n}\left(I_{d}: H^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right) \sim_{s, p}\left(\frac{\left.\log _{2}\left(1+d / \log _{2} n\right)\right)}{\log _{2} n}\right)^{s / p}
$$

Preasymptotic estimates - mixed case

Theorem (KSU 2015)

Let $s>0, d \geq 2$ and $8 \leq n \leq d 2^{2 d-1}$. Then

$$
a_{n}\left(I_{d}: H_{m i x}^{s, 1}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right) \leq\left(\frac{e^{2}}{n}\right)^{\frac{s}{2+\log _{2} d}} .
$$

- The bound is non-trivial (i.e. <1) for all n in the given range, since $\frac{e^{2}}{n} \leq \frac{e^{2}}{8}=0.9236 \ldots<1$.
- We have similar lower estimates. They are not matching but they show, that one has to wait exponentially long until one can "see" the correct asymptotic rate n^{-s}, ignoring the log-terms.

Gevrey classes

- Introduced already in 1918, since then many applications in PDEs.

Definition (Maurice Gevrey, 1918)

Let $\sigma>1$. A function $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ belongs to the Gevrey class $\mathbf{G}^{\sigma}\left(\mathbb{R}^{d}\right)$, if for every compact subset $K \subset \mathbb{R}^{d}$ there are constants $C=C(K)>0$ and $R=R(K)>0$ such that for all multi-indices $\alpha \in \mathbb{N}_{0}^{d}$

$$
\sup \left|D^{\alpha} f(x)\right| \leq C \cdot R^{\alpha_{1}+\ldots+\alpha_{d}} \cdot\left(\alpha_{1}!\cdots \alpha_{d}!\right)^{\sigma} .
$$

- The Gevrey classes $\mathbf{G}^{\sigma}\left(\mathbb{R}^{d}\right)$ are linear spaces, but not normed spaces.
- $\sigma=1$: All functions in $\mathbf{G}^{\sigma}\left(\mathbb{R}^{d}\right)$ are analytic.
- $\sigma>1$: $\quad \mathbf{G}^{\sigma}\left(\mathbb{R}^{d}\right)$ contains non-analytic functions.
- For periodic $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, the growth conditions on the derivatives can be rephrased it terms of Fourier coefficients.

Periodic Gevrey spaces

Definition

Let $0<s<1$ and $c>0$. The periodic Gevrey space $G^{s, c}\left(\mathbb{T}^{d}\right)$ consists of all C^{∞}-functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ such that

$$
\left\|f \mid G^{s, c}\left(\mathbb{T}^{d}\right)\right\|:=(\sum_{k \in \mathbb{Z}^{d}} \underbrace{\exp \left(c\|k\|_{1}^{s}\right)^{2}}_{=w(k)}\left|c_{k}(f)\right|^{2})^{1 / 2}<\infty .
$$

- For periodic $f: \quad f \in \mathbf{G}^{\sigma}\left(\mathbb{R}^{d}\right) \Longleftrightarrow \exists c>0: f \in G^{1 / \sigma, c}\left(\mathbb{T}^{d}\right)$.

Theorem (KP2015)

Let $0<s<1, c>0$ and $d \in \mathbb{N}$. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}\left(I_{d}: G^{s, c}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right)}{\exp \left(-2^{-s} c(d!n)^{s / d}\right)}=1
$$

- We also have preasymptotic estimates, as well as estimates for large n.

From L_{2}-approximation to L_{∞}-approximation

- Recall: $F_{d}(w) \hookrightarrow L_{\infty}\left(\mathbb{T}^{d}\right) \Longleftrightarrow \sum_{k \in \mathbb{Z}^{d}} 1 / w(k)^{2}<\infty \quad$ In this case:

Theorem (CKS2016)

$$
a_{n}\left(I_{d}: F_{d}(w) \rightarrow L_{\infty}\left(\mathbb{T}^{d}\right)\right)=\left(\sum_{j=n}^{\infty} a_{j}\left(I_{d}: F_{d}(w) \rightarrow L_{2}\left(\mathbb{T}^{d}\right)\right)^{2}\right)^{1 / 2}
$$

- This can be applied to Sobolev and Gevrey embeddings

$$
\begin{aligned}
& H^{s, p}\left(\mathbb{T}^{d}\right) \hookrightarrow L_{\infty}\left(\mathbb{T}^{d}\right) \Longleftrightarrow s>d / 2 \\
& H_{m i x}^{s, p}\left(\mathbb{T}^{d}\right) \hookrightarrow L_{\infty}\left(\mathbb{T}^{d}\right) \Longleftrightarrow s>1 / 2 \\
& G^{s, c}\left(\mathbb{T}^{d}\right) \hookrightarrow L_{\infty}\left(\mathbb{T}^{d}\right) \quad \forall 0<s<1, c>0
\end{aligned}
$$

We get optimal asymptotic constants for these embeddings.

- Open problem: Preasymptotics for Sobolev embeddings?

Information-based complexity (IBC)

- Consider the approximation problem

$$
I_{d}: F_{d}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right), \quad d \in \mathbb{N}
$$

- Optimal worst case error of linear algorithms (using n pieces of arbitraray linear information)

$$
\operatorname{err}_{n}^{\text {wor }}\left(I_{d}\right)=a_{n+1}\left(I_{d}\right)
$$

- Information complexity

$$
n(\varepsilon, d):=\min \left\{n \in \mathbb{N}: a_{n+1}\left(l_{d}\right) \leq \varepsilon\right\}
$$

- What is the behaviour of $n(\varepsilon, d)$ as $d \rightarrow \infty$ and/or $\varepsilon \rightarrow 0$?
- Tractability notions in IBC classify this behaviour

Tractability notions

- polynomial

$$
n(\varepsilon, d) \leq C \varepsilon^{-p} d^{q}
$$

- quasi-polynomial

$$
\ln n(\varepsilon, d) \leq C\left(1+\ln \frac{1}{\varepsilon}\right)(1+\ln d)
$$

- uniformly weakly tractable

$$
\lim _{1 / \varepsilon+d \rightarrow \infty} \frac{\ln n(\varepsilon, d)}{(1 / \varepsilon+d)^{q}}=0 \quad \text { for all } q>0
$$

- weakly tractable

$$
\lim _{1 / \varepsilon+d \rightarrow \infty} \frac{\ln n(\varepsilon, d)}{1 / \varepsilon+d}=0
$$

- intractable $=$ not weakly tractable
- curse of dimension

$$
\begin{aligned}
& n\left(\varepsilon_{0}, d\right) \geq C^{d} \\
& \text { for some } \varepsilon_{0}>0 \text { and } C>1 \\
& \text { and infinitely many } d \in \mathbb{N}
\end{aligned}
$$

Tractability of our approximation problems

Our estimates can be translated into tractability results.

Theorem

None of the approximation problems $I_{d}: F_{d}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right), \quad d \in \mathbb{N}$, with

$$
F_{d}\left(\mathbb{T}^{d}\right)=H^{s, p}\left(\mathbb{T}^{d}\right) \text { or } H_{m i x}^{s, p}\left(\mathbb{T}^{d}\right) \text { or } G^{s, c}\left(\mathbb{T}^{d}\right)
$$

suffers from the curse of dimensionality.

Theorem (isotropic Sobolev spaces)

Let $0<s, p<\infty$. The approximation problem

$$
I_{d}: H^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right) \quad, d \in \mathbb{N},
$$

is weakly tractable, if $s>p$, and intractable, if $s \leq p$.

Tractability - continued

Theorem (mixed Sobolev spaces)

For all $0<s, p<\infty$ the approximation problem

$$
I_{d}: H_{m i x}^{s, p}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right) \quad, d \in \mathbb{N},
$$

is quasi-polynomially tractable, but not polynomially tractable.

Theorem (Gevrey spaces)

For all $0<s<1$ and $c>0$ the approximation problem

$$
I_{d}: G^{s, c}\left(\mathbb{T}^{d}\right) \rightarrow L_{2}\left(\mathbb{T}^{d}\right) \quad, d \in \mathbb{N}
$$

is uniformly weakly tractable, but not quasi-polynomially tractable.

Final remarks

An interesting observation

- Gevrey spaces consist of C^{∞}-functions and are much smaller than the mixed spaces, which are only of finite smoothness.
- The decay rate of the approximation numbers a_{n} as $n \rightarrow \infty$ is
- subexponential for Gevrey embeddings
- polynomial for mixed-space embeddings
- But the tractability of the mixed-space embeddings is better. This is due to the preasymptotic behaviour.

Thank you for your attention!

