Compactness criteria in L^p, $p > 0$

V.G. Krotov

Belarusian State University

Będlewo, 19.09.2017
Historically first compactness criterion in function space was a following statement, giving condition of completely boundedness in the space of continuous function.

Theorem (C.Arzela–G.Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if S is uniformly bounded and equicontinuous, that is

\[\exists M > 0 \quad \forall f \in S, \ x \in X \quad |f(x)| \leq M \]

\[\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall f \in S \quad \forall x_1, x_2 \in X \]

\[d(x_1, x_2) < \delta \quad \implies \quad |f(x_1) - f(x_2)| < \varepsilon. \]
Historically first compactness criterion in function space was a following statement, giving condition of completely boundedness in the space of continuous function.

Theorem (C.Arzela–G.Ascoli criterion)

Let X be compact metric space. The set $S \subset C(X)$ is completely bounded if and only if S is uniformly bounded and equicontinuous, that is

$$\exists \ M > 0 \ \forall \ f \in S, \ x \in X \ |f(x)| \leq M$$

$$\forall \ \epsilon > 0 \ \exists \ \delta > 0 \ \forall \ f \in S \ \forall \ x_1, x_2 \in X$$

$$d(x_1, x_2) < \delta \ \implies \ |f(x_1) - f(x_2)| < \epsilon.$$
Compactness in $L^p(X)$
Notations

Let \((X, d, \mu)\) be bounded metric space with metric \(d\) and Borel measure \(\mu\),

\[B = B(x, r) = \{ y \in X : d(x, y) < r \}, \]

\(r_B\) is the radius of \(B\),

\[f_B = \int_B f \, d\mu = \frac{1}{\mu_B} \int_B f \, d\mu \]

Doubling condition

\[\mu_B(x, 2r) \leq c_\mu \mu_B(x, r), \quad x \in X, \quad r > 0. \quad (1) \]

\[\| f \|_{L^p} = \| f \|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}, \quad p > 0. \]
Notations

Let \((X, d, \mu)\) be bounded metric space with metric \(d\) and Borel measure \(\mu\),

\[
B = B(x, r) = \{y \in X : d(x, y) < r\},
\]

\(r_B\) is the radius of \(B\),

\[
f_B = \int_B f \, d\mu = \frac{1}{\mu B} \int_B f \, d\mu
\]

Doubling condition

\[
\mu B(x, 2r) \leq c_\mu \mu B(x, r), \quad x \in X, \quad r > 0.
\] \(1\)

\[
\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}, \quad p > 0.
\]
Notations

Let \((X, d, \mu)\) be bounded metric space with metric \(d\) and Borel measure \(\mu\),

\[B = B(x, r) = \{y \in X : d(x, y) < r\},\]

\(r_B\) is the radius of \(B\),

\[f_B = \int_B f \, d\mu = \frac{1}{\mu_B} \int_B f \, d\mu\]

Doubling condition

\[\mu_B(x, 2r) \leq c_{\mu} \mu_B(x, r), \quad x \in X, \quad r > 0. \quad (1)\]

\[\|f\|_{L^p} = \|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}, \quad p > 0.\]
Notations

Let \((X, d, \mu)\) be bounded metric space with metric \(d\) and Borel measure \(\mu\),

\[B = B(x, r) = \{ y \in X : d(x, y) < r \}, \]

\(r_B\) is the radius of \(B\),

\[f_B = \int_B f \, d\mu = \frac{1}{\mu B} \int_B f \, d\mu \]

Doubling condition

\[\mu B(x, 2r) \leq c_\mu \mu B(x, r), \quad x \in X, \quad r > 0. \] \(1\)

\[\| f \|_{L^p} = \| f \|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}, \quad p > 0. \]
Theorem (A.N.Kolmogorov criterion)

\[S \subset L^p(X), \ p \geq 1, \text{ is completely bounded if and only if } S \text{ is bounded and } \]
\[\lim_{r \to +0} \sup_{f \in S} \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) = 0. \]

A.N.Kolmogorov (1931), \(X \subset \mathbb{R}^n \) is bounded and measurable (all functions are zero outside of \(X \)).
A.Kałamajska (1999), on metric measure spaces with the property
\[\forall \ r > 0 \quad \inf_{x \in X} \mu B(x, r) > 0. \]
Theorem (A.N.Kolmogorov criterion)

$S \subset L^p(X)$, $p \geq 1$, is completely bounded if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) = 0.$$

A.N.Kolmogorov (1931), $X \subset \mathbb{R}^n$ is bounded and measurable (all functions are zero outside of X).

A.Kałamajska (1999), on metric measure spaces with the property

$$\forall r > 0 \quad \inf_{x \in X} \mu B(x, r) > 0.$$
Theorem (A.N.Kolmogorov criterion)

$S \subset L^p(X), \ p \geq 1,$ is completely bounded if and only if S is bounded and

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left| f(x) - \int_{B(x,r)} f \, d\mu \right|^p \, d\mu(x) = 0.$$

A.N.Kolmogorov (1931), $X \subset \mathbb{R}^n$ is bounded and measurable (all functions are zero outside of X).

A.Kałamajska (1999), on metric measure spaces with the property

$$\forall \ r > 0 \quad \inf_{x \in X} \mu B(x, r) > 0.$$
Theorem (A.N.Kolmogorov criterion)

\[S \subset L^p(X), \; p \geq 1, \text{ is completely bounded if and only if } S \text{ is bounded and } \]

\[\lim_{r \to +0} \sup_{f \in S} \int_{X} \left| \int_{B(x,r)} f \, d\mu - f(x) \right|^p \, d\mu(x) = 0. \]

A.N.Kolmogorov (1931), \(X \subset \mathbb{R}^n \) is bounded and measurable (all functions are zero outside of \(X \)).

A.Kałamajska (1999), on metric measure spaces with the property

\[\forall r > 0 \; \; \inf_{x \in X} \mu B(x, r) > 0. \]
Luzin theorem and compactness
Let Ω be the class of functions $\eta : (0, 1] \to \mathbb{R}_+$,

$$\eta(+0) = 0, \quad \eta(t) \uparrow.$$

Let $D_\eta(f)$ be the set of functions $0 \leq g \in L^0(X)$ with

$$\exists E \subset X \quad \mu E = 0$$

$$|f(x) - f(y)| \leq [g(x) + g(y)]\eta(d(x, y)), \quad x, y \in X \setminus E. \quad (2)$$

This inequality (2) is called local smoothness inequality.
Let Ω be the class of functions $\eta : (0, 1] \to \mathbb{R}_+$,

$$\eta(+0) = 0, \quad \eta(t) \uparrow.$$

Let $D_\eta(f)$ be the set of functions $0 \leq g \in L^0(X)$ with

$$\exists E \subset X \quad \mu E = 0$$

$$|f(x) - f(y)| \leq [g(x) + g(y)]\eta(d(x,y)), \quad x, y \in X \setminus E.$$ \hspace{1cm} (2)

This inequality (2) is called local smoothness inequality.
Main point of new criterion of compactness is the following: the function \(\eta \in \Omega \) in local smoothness inequality is the same for whole compact, and functions \(g \) from this inequality satisfy some uniform estimate.

Theorem

The set \(S \subset L^p(X) \), \(p > 0 \), is completely bounded if and only if \(S \) is bounded and

\[
\exists \eta \in \Omega \quad \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty
\]

If we replace here \(L^p \) by \(C \), then we obtain perfectly Arzela–Ascoli criterion for \(C(X) \).
Main point of new criterion of compactness is the following: the function $\eta \in \Omega$ in local smoothness inequality is the same for whole compact, and functions g from this inequality satisfy some uniform estimate.

Theorem

The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \quad \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty$$

If we replace here L^p by C, then we obtain perfectly Arzela–Ascoli criterion for $C(X)$.
Main point of new criterion of compactness is the following: the function $\eta \in \Omega$ in local smoothness inequality is the same for whole compact, and functions g from this inequality satisfy some uniform estimate.

Theorem

The set $S \subset L^p(X)$, $p > 0$, is completely bounded if and only if S is bounded and

$$\exists \eta \in \Omega \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty$$

If we replace here L^p by C, then we obtain perfectly Arzela–Ascoli criterion for $C(X)$.
Main point of new criterion of compactness is the following: the function \(\eta \in \Omega \) in local smoothness inequality is the same for whole compact, and functions \(g \) from this inequality satisfy some uniform estimate.

Theorem

The set \(S \subset L^p(X), \, p > 0 \), is completely bounded if and only if \(S \) is bounded and

\[
\exists \eta \in \Omega \quad \sup_{f \in S} \inf_{g \in D_\eta(f)} \|g\|_{L^p(X)} < +\infty
\]

If we replace here \(L^p \) by \(C \), then we obtain perfectly Arzela–Ascoli criterion for \(C(X) \).
Maximal functions and compactness
The construction of functions g from local smoothness inequality goes back to works of A.Calderon, K.I.Oskolkov and V.I.Kolyada.

For $q > 0$ and $\eta \in \Omega$ denote by

$$
N^q_{\eta} f(x) = \sup_{B \ni x} \frac{1}{\eta(r_B)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.
$$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), and later A.Cálderon–R.Scott (1978),

$X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977, in implicit form),

$X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987), extended Oskolkov results on functions of several variables, in general case I.A.Ivanishko (2004).

The main property now is the local smoothness type inequality

$$
|f(x) - f(y)| \leq c_q [N^q_{\eta} f(x) + N^q_{\eta} f(x)] \eta(d(x, y)).
$$
The construction of functions g from local smoothness inequality goes back to works of A.Calderon, K.I.Oskolkov and V.I.Kolyada. For $q > 0$ and $\eta \in \Omega$ denote by

$$N^q_\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(r_B)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

For $X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), and later A.Cálderon–R.Scott (1978), $X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977, in implicit form), $X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987), extended Oskolkov results on functions of several variables, in general case I.A.Ivanishko (2004).

The main property now is the local smoothness type inequality

$$|f(x) - f(y)| \leq c_q [N^q_\eta f(x) + N^q_\eta f(x)] \eta(d(x, y)).$$
The construction of functions g from local smoothness inequality goes back to works of A.Calderon, K.I.Oskolkov and V.I.Kolyada. For $q > 0$ and $\eta \in \Omega$ denote by

$$N^q_\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(r_B)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

$X = \mathbb{R}^n, \eta(t) = t^\alpha$ A.Calderon (1972), and later A.Calderon–R.Scott (1978), $X = [0, 1], \eta(t)t^{-1}$ K.I.Oskolkov (1977, in implicit form), $X = [0, 1]^n, \eta(t)t^{-1}$ V.I.Kolyada (1987), extended Oskolkov results on functions of several variables, in general case I.A.Ivanishko (2004).

The main property now is the local smoothness type inequality

$$|f(x) - f(y)| \leq c_q [N^q_\eta f(x) + N^q_\eta f(x)] \eta(d(x, y)).$$
The construction of functions g from local smoothness inequality goes back to works of A.Calderon, K.I.Oskolkov and V.I.Kolyada. For $q > 0$ and $\eta \in \Omega$ denote by

$$\mathcal{N}_q^\eta f(x) = \sup_{B \ni x} \frac{1}{\eta(r_B)} \left(\int_B |f(x) - f(y)|^q d\mu(y) \right)^{1/q}.$$

$X = \mathbb{R}^n$, $\eta(t) = t^\alpha$ A.Cálderon (1972), and later A.Cálderon–R.Scott (1978), $X = [0, 1]$, $\eta(t)t^{-1}$ K.I.Oskolkov (1977, in implicit form), $X = [0, 1]^n$, $\eta(t)t^{-1}$ V.I.Kolyada (1987), extended Oskolkov results on functions of several variables, in general case I.A.Ivanishko (2004).

The main property now is the local smoothness type inequality

$$|f(x) - f(y)| \leq c_q \left[\mathcal{N}_q^\eta f(x) + \mathcal{N}_q^\eta f(x) \right] \eta(d(x, y)).$$
Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. Then

1) if $0 < q < p$ and S is completely bounded, then

$$\exists \eta \in \Omega \sup_{f \in S} \|N^q_{\eta}f\|_{L^p(X)} < +\infty,$$

(3)

2) if for some $q > 0$ the condition (3) is fulfilled then S is completely bounded.

The first statement of this theorem is not true for $q = p$.

The second part this theorem can be strengthened, and the condition (3) can be weakened.
Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. Then

1) if $0 < q < p$ and S is completely bounded, then

$$\exists \eta \in \Omega \quad \sup_{f \in S} \left\| N^q_{\eta} f \right\|_{L^p(X)} < +\infty,$$ \hspace{1cm} (3)

2) if for some $q > 0$ the condition (3) is fulfilled then S is completely bounded.

The first statement of this theorem is not true for $q = p$.

The second part this theorem can be strengthened, and the condition (3) can be weakened.
Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. Then
1) if $0 < q < p$ and S is completely bounded, then

$$\exists \eta \in \Omega \sup_{f \in S} \|N^q_\eta f\|_{L^p(X)} < +\infty,$$

(3)

2) if for some $q > 0$ the condition (3) is fulfilled then S is completely bounded.

The first statement of this theorem is not true for $q = p$.
The second part this theorem can be strengthened, and the condition (3) can be weakened.
Theorem

Let \(S \subset L^p(X), \ p > 0, \) be bounded set. Then

1) if \(0 < q < p \) and \(S \) is completely bounded, then

\[
\exists \eta \in \Omega \quad \sup_{f \in S} \| \mathcal{N}_q \eta f \|_{L^p(X)} < +\infty, \tag{3}
\]

2) if for some \(q > 0 \) the condition (3) is fulfilled then \(S \) is completely bounded.

The first statement of this theorem is not true for \(q = p \).
The second part this theorem can be strengthened, and the condition (3) can be weakened.
Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. If for some $q > 0$

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left(\int_{B(x,r)} |f(x) - f(y)|^q \, d\mu(y) \right)^{p/q} \, d\mu(x) = 0,$$

then S is completely bounded.
New conditions for compactness
New conditions for compactness

Let $B \subset X$ be a ball. Then there exists the number $I_B^{(p)} f$, such that

$$\int_B |f - I_B^{(p)} f|^p d\mu = \inf_{c \in \mathbb{R}} \int_B |f - c|^p d\mu.$$

Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. If for some $q > 0$ the following condition holds

$$\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |I_{B(x,r)}^{(q)} f - f(y)|^q d\mu(y) \right]^{p/q} d\mu(x) = 0 \quad (5)$$

then S is completely bounded.

The last two theorems looks very similar. But the proofs are quite different.
Let $B \subset X$ be a ball. Then there exists the number $I_B^{(p)} f$, such that

$$
\int_B |f - I_B^{(p)} f|^p \, d\mu = \inf_{c \in \mathbb{R}} \int_B |f - c|^p \, d\mu.
$$

Theorem

Let $S \subset L^p(X)$, $p > 0$, be bounded set. If for some $q > 0$ the following condition holds

$$
\lim_{r \to +0} \sup_{f \in S} \int_X \left[\int_{B(x,r)} |I_B^{(q)} f - f(y)|^q \, d\mu(y) \right]^{p/q} \, d\mu(x) = 0
$$

then S is completely bounded.

The last two theorems looks very similar. But the proofs are quite different.
It is natural to consider the following condition

$$\lim_{r \to 0} \sup_{f \in S} \int_{X} |I_{B(x,r)}^{(q)} f - f(x)|^p \, d\mu(x) = 0.$$ \hspace{1cm} (6)

It is similar to Kolmogorov condition. But I don’t know if this condition is sufficient for compactness of S.
It is natural to consider the following condition

$$\lim_{r \to 0} \sup_{f \in S} \int_X |I_{B(x,r)}^{(q)} f - f(x)|^p \, d\mu(x) = 0.$$ \hspace{1cm} (6)

It is similar to Kolmogorov condition.

But I don’t know if this condition is sufficient for compactness of S.
It is natural to consider the following condition

$$\lim_{r \to 0} \sup_{f \in S} \int_X |I_{B(x,r)}^{(q)} f - f(x)|^p \, d\mu(x) = 0. \quad (6)$$

It is similar to Kolmogorov condition. But I don’t know if this condition is sufficient for compactness of S.
All L^p-criterion don’t work for unbounded X. This was observed firstly by J.Tamarkin (1932). We need the following extra condition for compactness

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0, R)} |f|^p \, d\mu = 0,$$
All L^p-criterion don’t work for unbounded X. This was observed firstly by J.Tamarkin (1932). We need the following extra condition for compactness

$$\lim_{R \to +\infty} \sup_{f \in S} \int_{X \setminus B(x_0, R)} |f|^p \, d\mu = 0,$$
Thank you for attention!