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Functions of bounded Jordan variation

Definition (Jordan, 1881)

Let x : [0, 1]→ R. The number

1∨
0

(x) = sup
N∑
i=1

|x(ti )− x(ti−1)|,

where the supremum is taken over all partitions
0 = t0 < t1 < ... < tN = 1 of the interval [0, 1] is said to be the
variation (in the sense of Jordan) of the function x .

Remark

We will further write |x(J)| = |x(b)− x(a)| for an interval
J = [a, b].
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BV space

Let I = [0, 1]. Let us define

BV = {x : I → R|
1∨
0

(x) < +∞}.

1 It is a linear space;

2 we may define the norm ‖x‖BV = |x(0)|+
∨1

0(x) for x ∈ BV ;

3 it is a Banach space;

4 the BV norm is stronger than ‖ · ‖∞ norm;

5 this space is not separable;

6 etc...
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Different generalizations

p-variation for p ∈ [1,+∞) (Wiener, 1924):

sup
N∑
i=1

|x(ti )− x(ti−1)|p;

φ-variation for function φ : [0,+∞)→ [0,+∞) (Young,
1937);

sup
N∑
i=1

φ(|x(ti )− x(ti−1)|);

Λ-variation....
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Λ-variation

Definition

Let us consider a nondecreasing sequence of positive real numbers
Λ = (λn)n∈N. We call such sequence a Waterman sequence if∑∞

n=1 1/λn = +∞. Waterman sequence is called proper if λn → +∞.

Definition (Waterman, 1972)

Let Λ be a Waterman sequence and let x : I → R. We say that x is of
bounded Λ-variation if there exists a positive constant M such that for
any finite sequence of nonoverlapping subintervals {I1, ..., In} of I , the
following inequality holds

n∑
k=1

|x(Ik)|
λk

≤ M.

The supremum of the above sums taken over the family of all the finite
collections of nonoverlapping subintervals of I is called the Λ-variation of
x and it is denoted by varΛ(x). The set of all functions satisfying
varΛ(x) < +∞ will be denoted as ΛBV .
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Why Λ-variation?

Origins: Waterman’s result of Fourier series;

Theorem (Waterman, 1972)

If x : I → R is of bounded Λ-variation for Λ = (1/n)n∈N (so called
harmonic bounded variation), then the Fourier series of x converge
everywhere and converge uniformly on closed intervals of
continuity of x. No larger class of ΛBV functions has this property,
i.e. in a larger ΛBV space there exists such function that its
Fourier series diverges at a point.
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Why Λ-variation?

Perlman’s result on regulated functions.

Theorem (Perlman, 1980)

For proper Waterman sequences Λ, Λn:

a)
⋂
Λ

ΛBV = BV ;

b)
⋃
Λ

ΛBV = R, where R is the set of all bounded regulated

functions;

c) for any sequence of proper Waterman sequences Λn we have⋂
n∈N

ΛnBV 6= BV ;

d) for any sequence of proper Waterman sequences Λn we have⋃
n∈N

ΛnBV 6= R;

Jacek Gulgowski Compactness in ΛBV spaces



Properties of Λ BV space

a Banach space when endowed with a norm
‖x‖Λ = |x(0)|+ varΛ(x);

contains only bounded functions with simple discontinuities
(bounded regulated functions);

not separable;

not reflexive (Prus-Wísniowski, 2012);

Helly’s selection theorem holds: if ‖x‖Λ ≤ M, for (xn) ⊂ ΛBV
and M ≥ 0, then there exists such pointwise convergent
subsequence xnk , than xnk → x0 and ‖x0‖Λ ≤ M;

norm stronger then supremum norm, i.e. there exists constant
cΛ > 0 such that ‖x‖∞ ≤ cΛ‖x‖Λ.
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Hierarchy of ΛBV spaces

Theorem (Perlman, Waterman, 1979)

Let Λ and Γ be Waterman’s sequences. Then:

(i)

ΛBV ⊆ ΓBV ⇔
n∑

k=1

1/γk = O(
n∑

k=1

1/λk);

(ii)

ΛBV = ΓBV ⇔ ∃c,c ′∈(0,+∞)c ≤
∑n

k=1 1/γk∑n
k=1 1/λk

≤ c ′.

Remark

If 1/γn = O(1/λn) then,
∑n

k=1 1/γk = O(
∑n

k=1 1/λk). This
condition may also be interpreted as λn = O(γn).
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Compact embeddings

Theorem (D. Bugajewski, J.G., P. Kasprzak, 2016)

Let Λ and Γ be Waterman sequences such that 1/γn = o(1/λn)
(i.e. λn = o(γn)). Then if A ⊂ ΛBV is bounded and compact in
‖ · ‖∞ norm, then A is compact subset of ΓBV .
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Compact embeddings – proof

Proof (an idea).

each sequence (xn) ⊂ A contains subsequence (xnk ) uniformly
convergent to a function x0; by Helly’s selection theorem we may
also assume that x0 ∈ ΛBV ;

we know that for m ≥ j , for j large enough, we have
1/γm ≤ ε · 1/λm;

now let us take any set of nonoverlapping intervals {Im : m ∈ N};
then for k ≥ k0 for k0 ∈ N large enough we may assume that
|(xnk − x0)(Im)| ≤ ε, for any interval Im;

Then∑ |(xnk − x0)(Im)|
γm

=
∑
m<j

|(xnk − x0)(Im)|
γm

+
∑
m≥j

|(xnk − x0)(Im)|
γm

≤

ε
∑
m<j

1

γm
+ε
∑
m≥j

|(xnk − x0)(Im)|
λm

≤ ε
∑
m<j

1

γm
+ε
(
varΛ(x0)+varΛ(xnk )

)
.

Jacek Gulgowski Compactness in ΛBV spaces



The natural question

Can we reverse it? i.e. is every compact subset A of ΓBV a
bounded subset of some ΛBV satisfying λn = o(γn)?

The simplest case: A = {x0}. The question leads to: is it true that
ΓBV =

∑
Λ=o(Γ) ΛBV ?

The surprising answer is: ”No!”. Why?

It is an easy observation that if x ∈ ΛBV ⊂ ΓBV where Λ = o(Γ),
then

lim
m→+∞

varΓ(m)
(x) = 0,

where Γ(m) = (γn)n≥m. Such functions are known as continuous in
Γ-variation (Waterman, 1977).

The space of all functions continuous in Λ-variation will be
denoted as ΛBVc .
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The surprising answer

Not all functions belonging to ΛBV are continuous in Λ-variation!

the example by R Fleissner, J Foran, 1978;

the characterization given by F. Prus-Wísniowski, 2008.

Theorem (F. Prus-Wísniowski, 2008)

The following conditions are equivalent:

the space C ΛBV = C [0, 1] ∩ ΛBV is separable;

C ΛBVc = C ΛBV ;

ΛBVc = ΛBV ;

SΛ < 2 where

SΛ = lim sup
n→+∞

∑2n
i=1 1/λi∑n
i=1 1/λi

,

is called the Shao-Sablin index of Λ.
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Shao-Sablin index

Remark

If limn→+∞
λ2n
λn

= α, then SΛ = 2
α .

Example

If λn = n, then SΛ = 1. If λn = ln n, then SΛ = 2.
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Necessary condition for compactness when SΓ < 2

Theorem (D. Bugajewski, K. Czudek, J. G., J. Sadowski, 2017)

If A ⊂ ΓBVc is compact in ΓBV , then there exists such Λ = o(Γ)
that A ⊂ ΛBV and A is bounded in ΛBV .
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Appendix: relation to ΦBV spaces

Assume φ : [0,+∞)→ [0,+∞) is convex, increasing, φ(0) = 0,
lims→0+ φ(s)/s = 0 and lims→+∞ φ(s)/s = +∞. Let
ψ : [0,+∞)→ [0,+∞) be the convex conjugate of φ, i.e.
ψ(x) = supy>0{xy − φ(y)}.

Theorem (Y. Ge, H. Wang, 2015)

1 The inclusion ΦBV ⊂ ΛBV holds iff there exists a constant
c > 0 such that

+∞∑
n=1

ψ(
1

cλn
) < +∞.

2 The inclusion ΛBV ⊂ ΦBV holds iff there exists a constant
c > 0 such that

sup
1≤k<+∞

kφ
(

c
( k∑
j=1

1/λj

)−1)
< +∞.
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