Compactness in spaces of functions of bounded variation

Jacek Gulgowski

Institute of Mathematics, University of Gdańsk

Będlewo, September 18, 2017

Definition (Jordan, 1881)

Let $x : [0,1] \to \mathbb{R}$. The number

$$\bigvee_{0}^{1}(x) = \sup \sum_{i=1}^{N} |x(t_{i}) - x(t_{i-1})|,$$

where the supremum is taken over all partitions $0 = t_0 < t_1 < ... < t_N = 1$ of the interval [0, 1] is said to be the variation (in the sense of Jordan) of the function x.

Remark

We will further write |x(J)| = |x(b) - x(a)| for an interval J = [a, b].

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

□ ▶ ▲ 三 ▶ ▲

글▶ 글

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

It is a linear space;

< ∃ →

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

It is a linear space;

2 we may define the norm $||x||_{BV} = |x(0)| + \bigvee_0^1(x)$ for $x \in BV$;

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

- It is a linear space;
- 2 we may define the norm $||x||_{BV} = |x(0)| + \bigvee_0^1(x)$ for $x \in BV$;
- it is a Banach space;

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

- It is a linear space;
- 2 we may define the norm $||x||_{BV} = |x(0)| + \bigvee_0^1(x)$ for $x \in BV$;
- it is a Banach space;
- the *BV* norm is stronger than $\|\cdot\|_{\infty}$ norm;

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

- It is a linear space;
- 2 we may define the norm $||x||_{BV} = |x(0)| + \bigvee_0^1(x)$ for $x \in BV$;
- it is a Banach space;
- the *BV* norm is stronger than $\|\cdot\|_{\infty}$ norm;
- this space is not separable;

$$BV = \{x : I \to \mathbb{R} | \bigvee_{0}^{1} (x) < +\infty\}.$$

- It is a linear space;
- 2 we may define the norm $||x||_{BV} = |x(0)| + \bigvee_0^1(x)$ for $x \in BV$;
- it is a Banach space;
- the *BV* norm is stronger than $\|\cdot\|_{\infty}$ norm;
- this space is not separable;
- 0 etc...

Different generalizations

• *p*-variation for $p \in [1, +\infty)$ (Wiener, 1924):

$$\sup \sum_{i=1}^{N} |x(t_i) - x(t_{i-1})|^{p};$$

< ∃ >

Different generalizations

• *p*-variation for $p \in [1, +\infty)$ (Wiener, 1924):

$$\sup \sum_{i=1}^{N} |x(t_i) - x(t_{i-1})|^{p};$$

• ϕ -variation for function $\phi : [0, +\infty) \to [0, +\infty)$ (Young, 1937);

$$\sup \sum_{i=1}^{N} \phi(|x(t_i) - x(t_{i-1})|);$$

< ∃ >

Different generalizations

• *p*-variation for $p \in [1, +\infty)$ (Wiener, 1924):

$$\sup \sum_{i=1}^{N} |x(t_i) - x(t_{i-1})|^{p};$$

• ϕ -variation for function $\phi : [0, +\infty) \to [0, +\infty)$ (Young, 1937);

$$\sup \sum_{i=1}^{N} \phi(|x(t_i) - x(t_{i-1})|);$$

Λ-variation....

Definition

Let us consider a nondecreasing sequence of positive real numbers $\Lambda = (\lambda_n)_{n \in \mathbb{N}}$. We call such sequence a *Waterman sequence* if $\sum_{n=1}^{\infty} 1/\lambda_n = +\infty$. Waterman sequence is called *proper* if $\lambda_n \to +\infty$.

Definition (Waterman, 1972)

Let Λ be a Waterman sequence and let $x: I \to \mathbb{R}$. We say that x is of bounded Λ -variation if there exists a positive constant M such that for any finite sequence of nonoverlapping subintervals $\{I_1, ..., I_n\}$ of I, the following inequality holds

$$\sum_{k=1}^n \frac{|x(I_k)|}{\lambda_k} \le M.$$

The supremum of the above sums taken over the family of all the finite collections of nonoverlapping subintervals of I is called the Λ -variation of x and it is denoted by $\operatorname{var}_{\Lambda}(x)$. The set of all functions satisfying $\operatorname{var}_{\Lambda}(x) < +\infty$ will be denoted as ΛBV .

Why A-variation?

æ

Э

母▶ ∢ ≣▶

• Origins: Waterman's result of Fourier series;

Theorem (Waterman, 1972)

If $x: I \to \mathbb{R}$ is of bounded Λ -variation for $\Lambda = (1/n)_{n \in \mathbb{N}}$ (so called harmonic bounded variation), then the Fourier series of x converge everywhere and converge uniformly on closed intervals of continuity of x. No larger class of ΛBV functions has this property, i.e. in a larger ΛBV space there exists such function that its Fourier series diverges at a point. • Perlman's result on regulated functions.

Theorem (Perlman, 1980)

For proper Waterman sequences Λ , Λ_n :

- c) for any sequence of proper Waterman sequences Λ_n we have $\bigcap_{n \in \mathbb{N}} \Lambda_n BV \neq BV;$
- d) for any sequence of proper Waterman sequences Λ_n we have $\bigcup_{n \in \mathbb{N}} \Lambda_n BV \neq \mathcal{R};$

• a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$

< E.

- a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$
- contains only bounded functions with simple discontinuities (bounded regulated functions);

- a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$
- contains only bounded functions with simple discontinuities (bounded regulated functions);
- not separable;

- a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$
- contains only bounded functions with simple discontinuities (bounded regulated functions);
- not separable;
- not reflexive (Prus-Wiśniowski, 2012);

- a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$
- contains only bounded functions with simple discontinuities (bounded regulated functions);
- not separable;
- not reflexive (Prus-Wiśniowski, 2012);
- Helly's selection theorem holds: if $||x||_{\Lambda} \leq M$, for $(x_n) \subset \Lambda BV$ and $M \geq 0$, then there exists such pointwise convergent subsequence x_{n_k} , than $x_{n_k} \to x_0$ and $||x_0||_{\Lambda} \leq M$;

- a Banach space when endowed with a norm $||x||_{\Lambda} = |x(0)| + \operatorname{var}_{\Lambda}(x);$
- contains only bounded functions with simple discontinuities (bounded regulated functions);
- not separable;
- not reflexive (Prus-Wiśniowski, 2012);
- Helly's selection theorem holds: if $||x||_{\Lambda} \leq M$, for $(x_n) \subset \Lambda BV$ and $M \geq 0$, then there exists such pointwise convergent subsequence x_{n_k} , than $x_{n_k} \to x_0$ and $||x_0||_{\Lambda} \leq M$;
- norm stronger then supremum norm, i.e. there exists constant $c_{\Lambda} > 0$ such that $||x||_{\infty} \le c_{\Lambda} ||x||_{\Lambda}$.

Theorem (Perlman, Waterman, 1979)

Let Λ and Γ be Waterman's sequences. Then: (i) $\Lambda BV \subseteq \Gamma BV \Leftrightarrow \sum_{k=1}^{n} 1/\gamma_k = O(\sum_{k=1}^{n} 1/\lambda_k);$ (ii) $\Lambda BV = \Gamma BV \Leftrightarrow \exists_{c,c' \in (0,+\infty)} c \leq \frac{\sum_{k=1}^{n} 1/\gamma_k}{\sum_{k=1}^{n} 1/\lambda_k} \leq c'.$

Theorem (Perlman, Waterman, 1979)

Let Λ and Γ be Waterman's sequences. Then: (i) $\Lambda BV \subseteq \Gamma BV \Leftrightarrow \sum_{k=1}^{n} 1/\gamma_k = O(\sum_{k=1}^{n} 1/\lambda_k);$ (ii) $\Lambda BV = \Gamma BV \Leftrightarrow \exists_{c,c' \in (0,+\infty)} c \leq \frac{\sum_{k=1}^{n} 1/\gamma_k}{\sum_{k=1}^{n} 1/\lambda_k} \leq c'.$

Remark

If
$$1/\gamma_n = O(1/\lambda_n)$$
 then, $\sum_{k=1}^n 1/\gamma_k = O(\sum_{k=1}^n 1/\lambda_k)$. This condition may also be interpreted as $\lambda_n = O(\gamma_n)$.

Theorem (D. Bugajewski, J.G., P. Kasprzak, 2016)

Let Λ and Γ be Waterman sequences such that $1/\gamma_n = o(1/\lambda_n)$ (i.e. $\lambda_n = o(\gamma_n)$). Then if $A \subset \Lambda BV$ is bounded and compact in $\|\cdot\|_{\infty}$ norm, then A is compact subset of ΓBV .

Compact embeddings – proof

Proof (an idea).

- each sequence $(x_n) \subset A$ contains subsequence (x_{n_k}) uniformly convergent to a function x_0 ; by Helly's selection theorem we may also assume that $x_0 \in \Lambda BV$;
- we know that for $m\geq j,$ for j large enough, we have $1/\gamma_m\leq \varepsilon\cdot 1/\lambda_m;$
- now let us take any set of nonoverlapping intervals $\{I_m : m \in \mathbb{N}\}$; then for $k \ge k_0$ for $k_0 \in \mathbb{N}$ large enough we may assume that $|(x_{n_k} - x_0)(I_m)| \le \varepsilon$, for any interval I_m ;
- Then

$$\sum \frac{|(x_{n_k} - x_0)(I_m)|}{\gamma_m} = \sum_{m < j} \frac{|(x_{n_k} - x_0)(I_m)|}{\gamma_m} + \sum_{m \ge j} \frac{|(x_{n_k} - x_0)(I_m)|}{\gamma_m} \le$$
$$\varepsilon \sum_{m < j} \frac{1}{\gamma_m} + \varepsilon \sum_{m \ge j} \frac{|(x_{n_k} - x_0)(I_m)|}{\lambda_m} \le \varepsilon \sum_{m < j} \frac{1}{\gamma_m} + \varepsilon (\operatorname{var}_{\Lambda}(x_0) + \operatorname{var}_{\Lambda}(x_{n_k})).$$

Can we reverse it? i.e. is every compact subset A of ΓBV a bounded subset of some ΛBV satisfying $\lambda_n = o(\gamma_n)$?

Can we reverse it? i.e. is every compact subset A of ΓBV a bounded subset of some ΛBV satisfying $\lambda_n = o(\gamma_n)$?

The simplest case: $A = \{x_0\}$.

Can we reverse it? i.e. is every compact subset A of ΓBV a bounded subset of some ΛBV satisfying $\lambda_n = o(\gamma_n)$?

The simplest case: $A = \{x_0\}$. The question leads to: is it true that $\Gamma BV = \sum_{\Lambda = o(\Gamma)} \Lambda BV$?

Can we reverse it? i.e. is every compact subset A of ΓBV a bounded subset of some ΛBV satisfying $\lambda_n = o(\gamma_n)$?

The simplest case: $A = \{x_0\}$. The question leads to: is it true that $\Gamma BV = \sum_{\Lambda = o(\Gamma)} \Lambda BV$?

The surprising answer is: "No!". Why?

Can we reverse it? i.e. is every compact subset A of ΓBV a bounded subset of some ΛBV satisfying $\lambda_n = o(\gamma_n)$?

The simplest case: $A = \{x_0\}$. The question leads to: is it true that $\Gamma BV = \sum_{\Lambda = o(\Gamma)} \Lambda BV$?

The surprising answer is: "No!". Why?

It is an easy observation that if $x \in \Lambda BV \subset \Gamma BV$ where $\Lambda = o(\Gamma)$, then

$$\lim_{m\to+\infty} \operatorname{var}_{\Gamma_{(m)}}(x) = 0,$$

where $\Gamma_{(m)} = (\gamma_n)_{n \ge m}$. Such functions are known as *continuous in* Γ -variation (Waterman, 1977).

The space of all functions continuous in Λ -variation will be denoted as ΛBV_c .

The surprising answer

Not all functions belonging to ΛBV are continuous in Λ -variation!

• the example by R Fleissner, J Foran, 1978;

The surprising answer

Not all functions belonging to ΛBV are continuous in Λ -variation!

- the example by R Fleissner, J Foran, 1978;
- the characterization given by F. Prus-Wiśniowski, 2008.

Theorem (F. Prus-Wiśniowski, 2008)

The following conditions are equivalent:

- the space $C \wedge BV = C[0,1] \cap \wedge BV$ is separable;
- $C \wedge B V_c = C \wedge B V;$
- $\Lambda BV_c = \Lambda BV;$
- $S_{\Lambda} < 2$ where

$$S_{\Lambda} = \limsup_{n \to +\infty} \frac{\sum_{i=1}^{2n} 1/\lambda_i}{\sum_{i=1}^{n} 1/\lambda_i},$$

is called the Shao-Sablin index of Λ .

Remark

If
$$\lim_{n\to+\infty} \frac{\lambda_{2n}}{\lambda_n} = \alpha$$
, then $S_{\Lambda} = \frac{2}{\alpha}$.

Example

If $\lambda_n = n$, then $S_{\Lambda} = 1$. If $\lambda_n = \ln n$, then $S_{\Lambda} = 2$.

э

∃ >

Necessary condition for compactness when $S_{\Gamma} < 2$

Theorem (D. Bugajewski, K. Czudek, J. G., J. Sadowski, 2017)

If $A \subset \Gamma BV_c$ is compact in ΓBV , then there exists such $\Lambda = o(\Gamma)$ that $A \subset \Lambda BV$ and A is bounded in ΛBV .

Appendix: relation to ΦBV spaces

Assume
$$\phi: [0, +\infty) \to [0, +\infty)$$
 is convex, increasing, $\phi(0) = 0$,
 $\lim_{s\to 0+} \phi(s)/s = 0$ and $\lim_{s\to +\infty} \phi(s)/s = +\infty$. Let
 $\psi: [0, +\infty) \to [0, +\infty)$ be the convex conjugate of ϕ , i.e.
 $\psi(x) = \sup_{y>0} \{xy - \phi(y)\}.$

Theorem (Y. Ge, H. Wang, 2015)

The inclusion ΦBV ⊂ ΛBV holds iff there exists a constant c > 0 such that

$$\sum_{n=1}^{+\infty}\psi(\frac{1}{c\lambda_n})<+\infty.$$

② The inclusion ∧BV ⊂ ΦBV holds iff there exists a constant c > 0 such that

$$\sup_{1 \le k < +\infty} k\phi \Big(c \Big(\sum_{j=1}^k 1/\lambda_j \Big)^{-1} \Big) < +\infty.$$