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Morrey spaces (unweighted)

Let 0 < p <∞ and −n
p ≤ r < 0: Lr

p(Rn) is the space of functions such
that ∥∥f |Lr

p
∥∥ ≡ sup

Q

1

|Q|
1
p+

r
n

(∫
Q
|f |p
) 1

p

<∞,

where the supremum is taken over all cubes Q in Rn.

Another notation: Lp,λ with 0 ≤ λ < n and

∥∥f |Lp,λ
∥∥ ≡ sup

Q

(
1

`(Q)λ

∫
Q
|f |p
) 1

p

,

λ = n + rp

——————–
L−n/p

p (Rn) = Lp
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Weighted Morrey spaces

Let 0 < p <∞ and −n
p ≤ r < 0. A weight w is a nonnegative locally

integrable function in Rn. We consider two types of weighted Morrey
spaces:

∥∥f |Lr
p(w)

∥∥ ≡ sup
Q

1

w(Q)
1
p+

r
n

(∫
Q
|f |pw

) 1
p

.

∥∥f |Lr
p(λ,w)

∥∥ ≡ sup
Q

1

|Q|
1
p+

r
n

(∫
Q
|f |pw

) 1
p

.

(Both are Lr
p(Rn) for w ≡ 1.)

——————–
L−n/p

p (w) = L−n/p
p (λ,w) = Lp,w

(
:= {f :

∫
Rn |f |pw <∞}

)
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Ap weights

1 < p <∞: w ∈ Ap if

[w ]Ap = sup
Q

(
1
|Q|

∫
Q

w
)(

1
|Q|

∫
Q

w1−p′
)p−1

<∞.

p = 1: w ∈ A1 if
w(Q)

|Q|
≤ C inf

x∈Q
w(x).

——————–
A1 ⊂ Ap ⊂ Aq (1 < p < q).
1 < p <∞: M (Hardy-Littlewood maximal operator) is bounded on
Lp(w) if and only if w ∈ Ap.
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Reverse Hölder inequality

w is in the reverse Hölder class RHσ for 1 < σ <∞ if(
1
|Q|

∫
Q

w(x)σdx
) 1
σ

≤ C
|Q|

∫
Q

w(x)dx ,

with C independent of Q.
——————–

If w ∈ RHσ and E ⊂ Q, then
w(E)

w(Q)
≤ C

(
|E |
|Q|

)1/σ′

.

——————–

If w ∈ Ap, then w ∈ RHσ for some σ > 1.
Ap ∩ RHσ = {w : wσ ∈ Aσ(p−1)+1}.
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A typical example: power weights

Let w(x) = |x |α.

w ∈ Ap if and only if −n < α < n(p − 1).
For α ≥ 0, w ∈ RHσ for every σ.
For −n < α < 0, w ∈ RHσ for σ < n

−α .

Javier Duoandikoetxea Morrey spaces and Ap weights



Operators on Morrey spaces

Smooth functions are not dense in the Morrey spaces.

We cannot use a density argument to extend an operator defined in
the class of smooth functions and satisfying estimates with Morrey
norms. We still need a way to define/extend the operator to the full
Morrey space.

The conclusion of our work can be summarize as follows:

If an operator satisfies (enough) weighted inequalities with Ap
weights, it is already defined on the corresponding Morrey
space and it satisfies Morrey estimates.
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Embeddings: weighted Morrey into weighted
Lebesgue

Proposition
Let 1 < p <∞, −n

p ≤ r < 0 and w ∈ Ap. For q0 near 1 and all
q ∈ [1,q0] there is 0 < α < n such that

Lr
p(w) ↪→ Lq,(1+|x |)−α .

If moreover w ∈ RHσ and −n
p ≤ r ≤ − n

pσ , it also holds that

Lr
p(λ,w) ↪→ Lq,(1+|x |)−α .

In particular r = − n
p gives Lp,w ↪→ Lq,(1+|x|)−α .
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Embeddings: weighted Morrey into weighted
Lebesgue

Similar result for endpoints:

Proposition
Let 1 ≤ p <∞ and ν ≥ 1. Let w ∈ A1 ∩ RHσ for some σ > ν. Then for
r in an appropriate range, there exists some 0 < α < n/ν such that

Lr
p(w),Lr

p(λ,w) ↪→ Lp,(1+|x |)−α(Rn).
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A property of weighted Lebesgue spaces

Proposition
Let be 1 < q <∞. Then it holds that⋃

w∈Aq

Lq,w =
⋃

1<p<∞

⋃
w∈Ap

Lp,w (
⋃

w∈A1

L1,w .

Hence the left-hand side is independent of q.

This result is also contained in G. KNESE, J. E. MCCARTHY, AND K. MOEN:
Unions of Lebesgue spaces and A1 majorants. Pacific J. Math. 280 (2016),
no. 2, 411–432.
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Weighted Morrey contained in the union of weighted
Lebesgue spaces

Corollary
For every 1 ≤ p0 <∞, every 1 < p <∞ (and also p = 1 if p0 = 1),
−n

p ≤ r < 0 and w ∈ Ap, it holds that

Lr
p(w) ⊂

⋃
u∈Ap0

Lp0,u.

If moreover w ∈ Ap ∩ RHσ, for every −n
p ≤ r < − n

pσ it holds that

Lr
p(λ,w) ⊂

⋃
u∈Ap0

Lp0,u.
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Extrapolation of weighted inequalities
(Lebesgue spaces)

J. L. Rubio de Francia, 1982
Let 1 ≤ p0 <∞. If a sublinear operator is bounded on Lp0,w for all
w ∈ Ap0 , it is bounded on Lp,w for all w ∈ Ap and 1 < p <∞.

Several extensions and variants. In particular, operators are not
needed.

Let 1 ≤ p0 <∞. If for pairs (f ,g) in a collection F ,

‖g|Lp0,w‖ ≤ C ‖f |Lp0,w‖ ,

for all w ∈ Ap0 , then the inequality holds for the same pairs with
Lp,w -norms for all w ∈ Ap and 1 < p <∞.
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Extrapolation-type results (Lebesgue to Morrey)

Theorem
Let 1 ≤ p0 <∞ and let F be a collection of nonnegative measurable
pairs of functions. Assume that for every (f ,g) ∈ F and every w ∈ Ap0

we have
‖g|Lp0,w‖ ≤ c1 ‖f |Lp0,w‖ ,

where c1 does not depend on the pair (f ,g) and it depends on w only
in terms of [w ]Ap0

. Then for every 1 < p <∞ (and also for p = 1 if
p0 = 1), every −n

p ≤ r < 0 and every w ∈ Ap we have∥∥g|Lr
p(w)

∥∥ ≤ c2
∥∥f |Lr

p(w)
∥∥ .

Furthermore, for every 1 < p <∞ (and also for p = 1 if p0 = 1) and
w ∈ Ap ∩ RHσ, if −n

p ≤ r ≤ − n
pσ we have∥∥g|Lr

p(λ,w)
∥∥ ≤ c3

∥∥f |Lr
p(λ,w)

∥∥ .
Javier Duoandikoetxea Morrey spaces and Ap weights



Comments on the statement

‖g|Lp0,w‖ ≤ c1 ‖f |Lp0,w‖ for all w ∈ Ap0 (*)

If (*) is assumed to hold whenever the right-hand side is finite (that
is, LHS =∞⇒ RHS =∞), the theorem asserts that it f is in
Lr

p(w) (resp. Lr
p(λ,w)), then also g is in Lr

p(w) (resp. Lr
p(λ,w)).

If (*) is only assumed to hold whenever the left-hand side is finite
(∞ ≤ finite is not excluded), the conclusion holds only for those g
which are in Lr

p(w) (resp. Lr
p(λ,w)).
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Details of the proof

w ∈ Ap, q > 1 such that w ∈ Ap/q. Set p̃ = p/q. Fix a cube Q. By
duality(∫

Q
gpw

) 1
p

=

(∫
Q

gp̃qw
) 1

p̃q

= sup
h : ‖h|Lp̃′,w (Q)‖=1

(∫
Q

gqhw
) 1

q

.

Fix h and we have(∫
Rn

gqhwχQ

) 1
q †
≤
(∫

Rn
gqM(hswsχQ)

1
s

) 1
q ††
≤ c

(∫
Rn

f qM(hswsχQ)
1
s

) 1
q

.

———————————
†: hswsχQ ≤ M(hswsχQ);
††: M(hswsχQ)

1/s ∈ A1 ⊂ Aq for s > 1 and hypothesis.
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Details of the proof

(∫
2Q

f qM(hswsχQ)
1
s

) 1
q

≤
(∫

2Q
f pw

) 1
p
(∫

2Q
M(hswsχQ)

p̃′
s w1−p̃′

) 1
qp̃′

.

f ∈ Lr
p(w)

boundedness of M.

∫
Rn\2Q

f qM(hswsχQ)
1
s ≤ c1

∞∑
j=1

∫
2j+1Q\2j Q

f q

(∫
Q hsws

|2jQ|

) 1
s

Hölder to
∫

2j+1Q f pw and f ∈ Lr
p(w),(∫

Q hsws)1/s ≤ c w(Q)1/p̃|Q|−1/s′ ,
properties of w ∈ Ap.
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Application to operators

Corollary
Let 1 ≤ p0 <∞. T acts from

⋃
w∈Ap0

Lp0,w into the space of
measurable functions and

‖Tf |Lp0,w‖ ≤ c1 ‖ f |Lp0,w‖

for all f ∈ Lp0,w and w ∈ Ap0 , with a constant depending on [w ]Ap0
.

Then for every 1 < p <∞ (and also p = 1 if p0 = 1), every
−n

p ≤ r < 0 and every w ∈ Ap, we have that T is well defined on
Lr

p(w) by restriction and, moreover,∥∥Tf |Lr
p(w)

∥∥ ≤ c2
∥∥ f |Lr

p(w)
∥∥ ,

for every f ∈ Lr
p(w).
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Application to operators

Furthermore, for p as before and every w ∈ Ap ∩RHσ, if −n
p ≤ r ≤ − n

pσ
we have that T is well defined on Lr

p(λ,w) by restriction and, moreover,∥∥Tf |Lr
p(λ,w)

∥∥ ≤ c3
∥∥ f |Lr

p(λ,w)
∥∥

for every f ∈ Lr
p(λ,w).

If T satisfies the weak-type assumption

‖Tf |WLp0,w‖ ≤ c1 ‖ f |Lp0,w‖

the estimates are replaced by their weak-type counterparts (Morrey spaces
defined with a weak-type norm).
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Other consequences

Vector-valued estimates: for 1 < q,p <∞ and same conditions on r ,∥∥∥∥(∑
j

|Tj fj |q
)1/q

∣∣∣∣Lr
p(w)

∥∥∥∥ ≤ c4

∥∥∥∥(∑
j

|fj |q
)1/q

∣∣∣∣Lr
p(w)

∥∥∥∥,
Similar estimates on Lr

p(λ,w).
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Extensions

Hypothesis of the type: for 1 < γ ≤ p0 <∞ and every w ∈ Ap0/γ ,

‖g|Lp0,w‖ ≤ c1 ‖f |Lp0,w‖ .

To be applied to operators like rough singular integrals,
Mihlin-Hörmander multipliers, etc.

(Limited range extrapolation) For some p0 such that
1 ≤ p− ≤ p0 ≤ p+ <∞ and w ∈ Ap0/p− ∩ RH(p+/p0)′ we have∥∥g|Lp0,w (R

n)
∥∥ ≤ c1

∥∥ f |Lp0,w (R
n)
∥∥ ,

To be applied to some operators, like Bochner-Riesz multipliers and
others, bounded on Lp for a limited range of p’s, with enough weighted
estimates.
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Applications

Directly applied to many operators.
Calderón-Zygmund operators and their maximal truncations
Multipliers
Rough singular integrals
Square functions of different types
Commutators
Oscillatory singular integrals
Bochner-Riesz operators
Pseudodifferential operators
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A∞-type results

Let 0 < p <∞ and w ∈ A∞. Then the following inequalities hold
whenever the left-hand side is finite:∥∥Tf |Lr

p(w)
∥∥ ≤ c1

∥∥Mf |Lr
p(w)

∥∥ ,∥∥Mf |Lr
p(w)

∥∥ ≤ c2

∥∥∥M]f
∣∣∣Lr

p(w)
∥∥∥ ,∥∥ Iαf |Lr

p(w)
∥∥ ≤ c3

∥∥Mαf |Lr
p(w)

∥∥ .
T : Calderón-Zygmund operator,
M: Hardy-Littlewood maximal operator,
M]: the sharp maximal function,
Iα: fractional integral of order α ∈ (0,n),
Mα: fractional maximal operator of order α.

Also with Lr
p(λ,w) instead of Lr

p(w) if w ∈ RHσ and − n
p ≤ r ≤ − n

pσ .
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